Midterm 3

Time: 7days

- 1. Compute the center of mass of a hemisphere of radius one.
- **2.** Find $\int_{-\infty}^{\infty} e^{-x^2} dx$.
- **3.** Compute the volume of the region which lies inside the sphere $x^2 + y^2 + z^2 = 1$ and above the cone $z = \sqrt{x^2 + y^2}$.
- **4.** Let $\mathbf{F} = (z^3 + 2xy)\mathbf{i} + x^2\mathbf{j} + 3xz^2\mathbf{k}$. Find the integral of \mathbf{F} around the unit square with vertices $(\pm 1, \pm 1)$.
- 5. Find the distance between the lines $\ell_1(t) = t(8, -1, 0) + (-1, 3, 5)$ and $\ell_2(t) = t(0, 3, 1) + (0, 3, 4)$.
- **6.** Let **r** be the vector field given by $\mathbf{r}(x, y, z) = (x, y, z)$ and $r := \|\mathbf{r}\|$. Compute the curl of the gravitational vectorfield $\mathbf{F} := \frac{\mathbf{r}}{r^3}$, and show that $\mathbf{F} := -\nabla \frac{1}{r}$.
- 7. A ring in the shape of the curve $x^2 + y^2 = 1$ has density $\rho(x, y) = |x| + |y|$. What is the mass of the ring.

Each problem is worth 15 points.

 $\mathtt{IAT}_{E} \mathtt{X} \qquad \ldots \qquad \mathcal{M} \mathcal{G}$