Midterm 3

1. Compute the center of mass of a hemisphere of radius one.
2. Find $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.
3. Compute the volume of the region which lies inside the sphere $x^{2}+y^{2}+$ $z^{2}=1$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.
4. Let $\mathbf{F}=\left(z^{3}+2 x y\right) \mathbf{i}+x^{2} \mathbf{j}+3 x z^{2} \mathbf{k}$. Find the integral of \mathbf{F} around the unit square with vertices $(\pm 1, \pm 1)$.
5. Find the distance between the lines $\ell_{1}(t)=t(8,-1,0)+(-1,3,5)$ and $\ell_{2}(t)=t(0,3,1)+(0,3,4)$.
6. Let \mathbf{r} be the vector field given by $\mathbf{r}(x, y, z)=(x, y, z)$ and $r:=\|\mathbf{r}\|$. Compute the curl of the gravitational vectorfield $\mathbf{F}:=\frac{\mathbf{r}}{r^{3}}$, and show that $\mathrm{F}:=-\nabla \frac{1}{r}$.
7. A ring in the shape of the curve $x^{2}+y^{2}=1$ has density $\rho(x, y)=|x|+|y|$. What is the mass of the ring.

Each problem is worth 15 points.

