PRACTICE QUIZ 1

1. Prove that the midpoints of any quadrilateral determine a parallelogram.

Hints: Label the vertices of the quadrilateral consecutively as a, b, c, and d. Let p, q, r, and s be the midpoints of $a b, b c, c d$, and $d a$ respectively. Then

$$
\stackrel{\rightharpoonup}{p q}=q-p=\frac{a+b}{2}-\frac{b+c}{2}=\frac{a-c}{2}=\frac{1}{2} \stackrel{\rightharpoonup}{c a} .
$$

Find $\overrightarrow{s r}$ by a similar computation, and compare with the above.
2. Prove the Cauchy-Schwartz inequality: $|v \cdot w| \leq\|v\|\|w\|$.

Hints: Consider two cases: either $v=c w$ for some constant c or not. In the former case it is easy to verify the inequality (check this). In the latter, let λ be a nonzero number and note that:

$$
0 \neq\|v+\lambda w\|^{2}=(v+\lambda w) \cdot(v+\lambda w)=\|v\|^{2}+2 \lambda v \cdot w+\lambda^{2}\|w\|^{2}
$$

The right hand side of the above is a quadratic expression in λ, which is nonzero. So what can we say about its discriminant?
3. Prove that the diagonals of a rhombus are orthogonal.

Hints: Label the vertices consecutively as a, b, c, and d. Let $v:=\overrightarrow{a b}$, and $w:=\overrightarrow{a d}$. Then $\overrightarrow{a c}=v+w$, and $\overrightarrow{b d}=-v+w($ why?). Compute $\overrightarrow{a c} \cdot \overrightarrow{b d}$.
4. Prove the Pythagorean theorem.

Hints: Label the vertices a, b, c, so that $a c$ is the hypothenuse. Let $v:=\overrightarrow{a b}$, and $w:=\overrightarrow{b c}$. Then $\overrightarrow{a c}=v+w$. Compute $\|\overrightarrow{a c}\|^{2}$.

