PRACTICE QUIZ 5

1. Use Gauss's theorem to find a relation between the volume of a polyhedron and the area of its faces.

By a polyhedron S, we mean a closed oriented surface (such as a cube or tetrahedron) which is made up of finitely many polygons glued together along their edges. Each polygon is called a face of S. Suppose that S has k faces which we denote by F_{i}. Let \mathbf{n}_{i} be the outward unit normal to the face F_{i}.

Step (i) Show that for any point \mathbf{x} in F_{i}, the quantity $d_{i}:=\mathbf{x} \cdot \mathbf{n}_{i}$ is constant. What is the meaning of d_{i} ? When is it positive? When is it negative? And when is it zero? (Note: If H_{i} denotes the plane of F_{i}, then d_{i} is called the signed distance of H_{i} from the origin.)

Step (ii) Let $\mathbf{r}(x, y, z):=(x, y, z) . \mathbf{r}$ is called the position vector field. Compute the flux of the position vector field across S; show that

$$
\iint_{S} \mathbf{r} \cdot \mathbf{n} d S=\sum_{i=1}^{k} \operatorname{Area}\left(F_{i}\right) d_{i} .
$$

Step (iii) Compute the divergence of \mathbf{r}. Show that

$$
\iiint_{B} \nabla \cdot \mathbf{r} d V=3 \operatorname{Volume}(B)
$$

where B denotes the region bounded by S.
Step(iv) Use Gauss's theorem (Total Divergence $=$ Flux $)$ to conclude that

$$
\operatorname{Volume}(B)=\frac{1}{3} \sum_{i=1}^{k} \operatorname{Area}\left(F_{i}\right) d_{i} .
$$

2. (a) Use the result of the previous problem to compute the volume of a cube. (b) Find the volumes of a regular tetrahedron, and a regular octahedron.

3 (Extra Credit). Find the volumes of the regular icosahedron and dodecahedron.

