Solutions to Midterm 2

1.

$$
\nabla \times F=\left|\begin{array}{ccc}
y z & x z & x y \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
i & j & k
\end{array}\right|=(x-x,-(y-y), z-z)=(0,0,0) .
$$

So F is a gradient vector field, because its curl vanishes everywhere.
2. If a particle moving along a path $\mathbf{c}(t)$ has constant speed, then $\left\|\mathbf{c}^{\prime}(t)\right\|^{2}$ is constant. So we have:
$0=\left(\left\|\mathbf{c}^{\prime}(t)\right\|^{2}\right)^{\prime}=\left(\mathbf{c}^{\prime}(t) \cdot \mathbf{c}^{\prime}(t)\right)^{\prime}=\mathbf{c}^{\prime \prime}(t) \cdot \mathbf{c}^{\prime}(t)+\mathbf{c}^{\prime}(t) \cdot \mathbf{c}^{\prime \prime}(t)=2 \mathbf{c}^{\prime}(t) \cdot \mathbf{c}^{\prime \prime}(t)$.
Thus $\mathbf{c}^{\prime}(t) \cdot \mathbf{c}^{\prime \prime}(t)=0$, which means that the velocity and acceleration vectors are orthogonal.
3.

$$
\underset{[0,2 \pi]}{\operatorname{Length}}[\mathbf{c}]:=\int_{0}^{2 \pi}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{0}^{2 \pi} \sqrt{(-\sin t)^{2}+(\cos t)^{2}+1} d t=2 \sqrt{2} \pi
$$

4.

$$
\begin{aligned}
\|u \times v\|^{2} & =\|u\|^{2}\|v\|^{2} \sin ^{2} \theta=\|u\|^{2}\|v\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\|u\|^{2}\|v\|^{2}-\|u\|^{2}\|v\|^{2} \cos \theta=\|u\|^{2}\|v\|^{2}-(u \cdot v)^{2}
\end{aligned}
$$

5. Recall that if line passes through a point p_{0} and has direction u, then its distance from a point p is given by

$$
\operatorname{dist}(p, \ell)=\frac{\left\|\overrightarrow{p_{0} p} \times u\right\|}{\|u\|}
$$

In this problem, $p=(2,2,0)$, and we may set $p_{0}=(2,3,1)$, and $u=$ ($1,1,1$). So

$$
\left.d=\frac{\|(0,1,1) \times(1,1,1)\|}{\sqrt{3}}=\frac{1}{\sqrt{3}}\| \| \begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 1 \\
i & j & k
\end{array} \right\rvert\, \|=\sqrt{\frac{2}{3}}
$$

6. First recall that if \mathbf{F} is a vector field and f is a scalar function, then $\nabla \cdot(f \mathbf{F})=(\nabla f) \cdot \mathbf{F}+f \nabla \cdot \mathbf{F}$. Thus

$$
\nabla \cdot\left(\frac{1}{r^{3}} \mathbf{r}\right)=\left(\nabla \frac{1}{r^{3}}\right) \cdot \mathbf{r}+\frac{1}{r^{3}} \nabla \cdot \mathbf{r} .
$$

Since $1 / r^{3}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}$,

$$
\nabla \frac{1}{r^{3}}=\left(\frac{-3 x}{r^{5}}, \frac{-3 y}{r^{5}}, \frac{-3 z}{r^{5}}\right)=-3 \frac{\mathbf{r}}{r^{5}},
$$

Further,

$$
\nabla \cdot \mathbf{r}=1+1+1=3
$$

So, combining the three equations above, we get

$$
\nabla \cdot\left(\frac{1}{r^{3}} \mathbf{r}\right)=-3 \frac{\mathbf{r}}{r^{5}} \cdot \mathbf{r}+\frac{1}{r^{3}} 3=\frac{-3 r^{2}}{r^{5}}+\frac{3}{r^{3}}=0
$$

7. a) Note that

$$
h^{\prime}(t)=\left(\mathbf{c}(t) \times \mathbf{c}^{\prime}(t)\right)^{\prime}=\mathbf{c}^{\prime}(t) \times \mathbf{c}^{\prime}(t)+\mathbf{c}^{\prime}(t) \times \mathbf{c}^{\prime \prime}(t)=0+\mathbf{c}^{\prime}(t) \times m \mathbf{c}^{\prime}(t)=0
$$

because the cross product of parallel vectors is zero. Therefore, h is constant.
b) $\mathbf{c}(t) \cdot h(t)=\mathbf{c}(t) \cdot \mathbf{c}(t) \times \mathbf{c}^{\prime}(t)=\mathbf{c}^{\prime}(t) \cdot \mathbf{c}(t) \times \mathbf{c}(t)=0$. So $\mathbf{c}(t)$ lies in the plane which passes through the origin and orthogonal to $h(t)$.

So, since $h(t)$ is constant, $\mathbf{c}(t)$ lies in a fixed plane.

