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Lecture Notes 1

1 Topological Manifolds

The basic objects of study in this class are manifolds. Roughly speaking, these are
objects which locally resemble a Euclidean space. In this section we develop the
formal definition of manifolds and construct many examples.

1.1 The Euclidean space

By R we shall always mean the set of real numbers. The set of all n-tuples of real
numbers Rn := {(p1, . . . , pn) | pi ∈ R} is called the Euclidean n-space. So we have

p ∈ Rn ⇐⇒ p = (p1, . . . , pn), pi ∈ R.

Let p and q be a pair of points (or vectors) in Rn. We define p + q := (p1 +
q1, . . . , pn + qn). Further, for any scalar r ∈ R, we define rp := (rp1, . . . , rpn). It is
easy to show that the operations of addition and scalar multiplication that we have
defined turn Rn into a vector space over the field of real numbers. Next we define
the standard inner product on Rn by

〈p, q〉 = p1q1 + . . . + pnqn.

Note that the mapping 〈·, ·〉 : Rn ×Rn → R is linear in each variable and is sym-
metric. The standard inner product induces a norm on Rn defined by

‖p‖ := 〈p, p〉1/2.

If p ∈ R, we usually write |p| instead of ‖p‖.

Exercise 1.1.1. (The Cauchy-Schwartz inequality) Prove that |〈p, q〉| 6 ‖p‖ ‖q‖,
for all p and q in Rn (Hints: If p and q are linearly dependent the solution is clear.
Otherwise, let f(λ) := 〈p−λq, p−λq〉. Then f(λ) > 0. Further, note that f(λ) may
be written as a quadratic equation in λ. Hence its discriminant must be negative).

The standard Euclidean distance in Rn is given by

dist(p, q) := ‖p− q‖.
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Exercise 1.1.2. (The triangle inequality) Show that dist(p, q) + dist(q, r) >
dist(p, r) for all p, q in Rn. (Hint: use the Cauchy-Schwartz inequality).

By a metric on a set X we mean a mapping d : X ×X → R such that

1. d(p, q) > 0, with equality if and only if p = q.

2. d(p, q) = d(q, p).

3. d(p, q) + d(q, r) > d(p, r).

These properties are called, respectively, positive-definiteness, symmetry, and the
triangle inequality. The pair (X, d) is called a metric space. Using the above exercise,
one immediately checks that (Rn,dist) is a metric space. Geometry, in its broadest
definition, is the study of metric spaces.

Finally, we define the angle between a pair of vectors in Rn by

angle(p, q) := cos−1 〈p, q〉
‖p‖ ‖q‖

.

Note that the above is well defined by the Cauchy-Schwartz inequality.

Exercise 1.1.3. (The Pythagorean theorem) Show that in a right triangle the
square of the length of the hypotenuse is equal to the sum of the squares of the length
of the sides (Hint: First prove that whenever 〈p, q〉 = 0, ‖p‖2 + ‖q‖2 = ‖p − q‖2.
Then show that this proves the theorem.).

Exercise 1.1.4. Show that the sum of angles in a triangle is π.

1.2 Topological spaces

By a topological space we mean a set X together with a collection T of subsets of
X which satisfy the following properties:

1. X ∈ T , and ∅ ∈ T .

2. If U1, U2 ∈ T , then U1 ∩ U2 ∈ T .

3. If Ui ∈ T , i ∈ I, then ∪iU ∈ T .

The elements of T are called open sets. Note that property 2 implies that any
finite intersection of open sets is open, and property 3 states that the union of any
collection of open sets is open. Any collection of subsets of X satisfying the above
properties is called a topology on X.
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Exercise 1.2.1 (Metric Topology). Let (X, d) be a metric space. For any p ∈ X,
and r > 0 define the ball of radius r centered at p as

Br(p) := {x ∈ X | d(x, p) ≤ r}.

We say U ⊂ X is open if for each point p of U there is an r > 0 such that Br(p) ⊂ U .
Show that this defines a topology on X. In particular, (Rn,dist) is a topological
space.

Thus every metric space is a topological space. The converse, however, is not
true. See Appendix A in Spivak.

Exercise 1.2.2. Show that the intersection of an infinite collection of open subsets
of Rn may not be open.

Let o denote the origin of Rn, that is

o := (0, . . . , 0).

The n-dimensional Euclidean sphere is defined as

Sn := {x ∈ Rn+1 | dist(x, o) = 1 }.

The next exercise shows how we may define a topology on Sn.

Exercise 1.2.3 (Subspace Topology). Let X be a topological space and suppose
Y ⊂ X. Then we say that a subset V of Y is open if there exists an open subset
U of X such that V = U ∩ Y . Show that with this collection of open sets, Y is a
topological space.

The n-dimensional torus Tn is defined as the cartesian product of n copies of
S1,

Tn := S1 × · · · × S1.

The next exercise shows that Tn admits a natural topology:

Exercise 1.2.4 (The Product Topology). Let X1 and X2 be topological spaces,
and X1 ×X2 be their Cartesian product, that is

X1 ×X2 := { (x1, x2) | x1 ∈ X1 and x2 ∈ X2 }.

We say that U ⊂ X1×X2 is open if U = U1×U2 where U1 and U2 are open subsets
of X1 and X2 respectively. Show that this defines a topology on X1 ×X2.

A partition P of a set X is defined as a collection Pi, i ∈ I, of subsets of X such
that X ⊂ ∪iPi and Pi ∩ Pj = ∅ whenever i 6= j. For any x ∈ X, the element of P
which contains x is called the equivalence class of x and is denoted by [x]. Thus we
get a mapping π : X → P given by π(x) := [x]. Suppose that X is a topological
space. Then we say that a subset U of P is open if π−1(U) is open in X.
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Exercise 1.2.5 (Quotient Topology). Let X be a topological space and P be
a partition of X. Show that P with the collection of open sets defined above is a
topological space.

Exercise 1.2.6 (Torus). Let P be a partition of [0, 1] × [0, 1] consisting of the
following sets: (i) all sets of the form {(x, y)} where (x, y) ∈ (0, 1)×(0, 1); (ii) all sets
of the form {(x, 1), (x, 0)} where x ∈ (0, 1); (iii) all sets of the form {(1, y), (0, y)}
where y ∈ (0, 1); and (iv) the set {(0, 0), (0, 1), (1, 0), (1, 1) }. Sketch the various
kinds of open sets in P under its quotient topology.

1.3 Homeomorphisms

A mapping f : X → Y between topological spaces is continuous if for every open
set U ⊂ X, f−1(U) is open in Y . Intuitively, we may think of a continuous map as
one which sends nearby points to nearby points.

Exercise 1.3.1. Let A, B ⊂ Rn be arbitrary subsets, f : A → B be a continuous
map, and p ∈ A. Show that for every ε > 0, there exists a δ > 0 such that whenever
dist(x, p) < δ, then dist(f(x), f(p)) < ε.

We say that two topological spaces X and Y are homeomorphic if there exists
a bijection f : X → Y which is continuous and has a continuous inverse. The main
problem in topology is deciding when two topological spaces are homeomorphic.

Exercise 1.3.2. Show that Sn − {(0, 0, . . . , 1)} is homeomorphic to Rn.

Exercise 1.3.3. Let X := [1, 0]× [1, 0], T1 be the subspace topology on X induced
by R2 (see Exercise 1.2.3), T2 be the product topology (see Exercise 1.2.4), and T3

be the quotient topology of Exercise 1.2.6. Show that (X, T1) is homeomorphic to
(X, T2), but (X, T3) is not homeomorphic to either of these spaces.

The n-dimensional Euclidean open ball of radius r centered at p is defined by

Un
r (p) := {x ∈ Rn | dist(x, p) < r}.

Exercise 1.3.4. Show that Un
1 (o) is homeomorphic to Rn.

For any a, b ∈ R, we set

[a, b] := {x ∈ R | a ≤ x ≤ b},

and
(a, b) := {x ∈ R | a < x < b}.

Exercise 1.3.5. Let P be a partition of [0, 1] consisting of all sets {x} where x ∈
(0, 1) and the set {0, 1}. Show that P , with respect to its quotient topology, is
homeomorphic to S1 (Hint: consider the mapping f : [0, 1] → S1 given by f(t) =
e2πit).
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Exercise 1.3.6. Let P be the partition of [0, 1]× [0, 1] described in Exercise 1.2.6.
Show that P , with its quotient topology, is homeomorphic to T 2.

Let P be the partition of Sn consisting of all sets of the form {p,−p} where
p ∈ Sn. Then P with its quotient topology is called the real projective space of
dimension n and is denoted by RPn.

Exercise 1.3.7. Let P be a partition of B2
1(o) consisting of all sets {x} where

x ∈ U2
1 (o), and the all the sets {x,−x} where x ∈ S1. Show that P , with its

quotient topology, is homeomorphic to RP2.

Next we show that Sn is not homeomorphic to Rm. This requires us to recall
the notion of compactness.

We say that a collection of subsets of X cover X, if X lies in the union of
these subsets. Any subset of a cover which is again a cover is called a subcover. A
topological space X is compact if every open cover of X has a finite subcover.

Exercise 1.3.8. Show that if X is compact and Y is homeomorphic to X, then Y
is compact as well.

Exercise 1.3.9. Show that if X is compact and f : X → Y is continuous, then
f(X) is compact.

Exercise 1.3.10. Show that every closed subset of a compact space is compact.

We say that a subset of X is closed if its complement is open.

Exercise 1.3.11. Show that a subset of R may be both open and closed. Also
show that a subset of R may be neither open nor closed.

The n-dimensional Euclidean ball of radius r centered at p is defined by

Bn
r (p) := {x ∈ Rn | dist(x, p) ≤ r}.

A subset A of Rn is bounded if A ⊂ Bn
r (o) for some r ∈ R. The following is one of

the fundamental results of topology.

Theorem 1.3.12. A subset of Rn is compact if and only if it is closed and bounded.

The above theorem can be used to show:

Exercise 1.3.13. Show that Sn is not homeomorphic to Rm.

Next, we show that R2 is not homeomorphic to R1. This can be done by using
the notion of connectedness.

We say that a topological space X is connected if and only if the only subsets of
X which are both open and closed are ∅ and X.
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Exercise 1.3.14. Show that if X is connected and Y is homeomorphic to X then
Y is connected.

Exercise 1.3.15. Show that if X is connected and f : X → Y is continuous, then
f(X) is connected.

We also have the following fundamental result:

Theorem 1.3.16. R and all of its intervals [a, b], (a, b) are connected.

We say that X is path connected if for every x0, x1 ∈ X, there is a continuous
mapping f : [0, 1] → X such that f(0) = x0 and f(1) = x1.

Exercise 1.3.17. Show that if X is path connected and Y is homeomorphic to X
then Y is path connected.

Exercise 1.3.18. Show that if X is path connected, then it its connected.

Exercise 1.3.19. Show that R2 is not homeomorphic to R1. (Hint: Suppose
that there is a homeomorphism f : R2 → R. Then for a point p ∈ R2, f is a
homeomorphism between R2 − p and R− f(p).)

The technique hinted in Exercise 1.3.19 can also be used in the following:

Exercise 1.3.20. Show that the figure “8”, with respect to its subspace topology,
is not homeomorphic to S1.

Finally, we show that Rn is not homeomorphic to Rm if m 6= n. This is a
difficult theorem requiring homology theory; however, it may be proved as an easy
corollary of the generalized Jordan curve thoerem:

Theorem 1.3.21 (Genralized Jordan). Let X ⊂ Rn be homeomorphic to Sn

(with respect to the subspace topology). Then Rn − Sn is not connected.

Use the above theorem to solve the following:

Exercise 1.3.22. Show that Rn is not homeomorphic to Rm unles m = n.
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