Jan 21, 2005^1

Math 598 Geometry and Topology II Spring 2005, PSU

Lecture Notes 3

1.8 Immersions and Embeddings

Let X and Y be topological spaces and $f: X \to Y$ be a continuous map. We say that f is an *immersion* provided that it is locally one-to-one, and f is an *embedding* provided that f is a homeomorphism between X and f(X) with respect to the subspace topology.

Exercise 1. Show that if X is compact, Y is Hausdorf and $f: X \to Y$ is a one-to-one continuous map, then f is an embedding. Demonstrate, by means of a counterexample, that the previous sentence may not be true if X is not compact.

Exercise 2. Show that if $f: M \to N$ is an immersion between manifolds of the same dimension, then f is open. In particular, if M is compact, and N is connected but not compact, then there exists no immersion $f: M \to N$. (*Hint:* Use the invariance domain: if two subsets of \mathbb{R}^n are homeomorphic and one of them is open then the other is open as well.)

Exercise 3. Let $C \subset M$ be a compact set, and $f: M \to X$ be an immersion which is one-to-one on C. Show that f is one-to-one on a neighborhood of C.

Exercise 4. Show that \mathbf{RP}^2 may be embedded in \mathbf{R}^4 . (*Hint:* Consider the restriction to the sphere of the mapping $f: \mathbf{R}^3 \to \mathbf{R}^4$ given by $f(x, y, z) = (xy, yz, xz, x^2 + 2y^2 + 3z^2)$.)

Theorem 5. Any compact manifold admits an embedding into a Euclidean space.

¹Last revised: February 16, 2005

Proof. By definition, for every $p \in M$ there exists an open neighborhood Uof p in M and a homeomorphism $\phi: U \to \mathbf{R}^n$. Let $V := \phi^{-1}(\operatorname{int} B^n(1))$, where $B^n(1)$ is the unit ball in \mathbf{R}^n . Since ϕ is continuous, V is open, and thus we obtain an open covering of M. But M is compact, so there exists a finite cover U_i , $1 \leq i \leq m$, of M and homeomorphisms $\phi_i: U_i \to \mathbf{R}^n$, such that $V_i := \phi_i^{-1}(\operatorname{int} B^n(1))$ also cover M.

Now let $\lambda: \mathbf{R}^n \to \mathbf{R}$ be a continuous map such that $\lambda \neq 0$ on $B^n(1)$ and $\lambda = 0$ on $\mathbf{R}^n - B^n(2)$. Define $\lambda_i: M \to \mathbf{R}$ by $\lambda_i(p) := \lambda(\phi_i(p))$ if $p \in U_i$ and $\lambda_i(p) = 0$ otherwise. We claim that, since M is hausorf, λ_i is continuous. To see this, let $K_i := \phi_i^{-1}(B^n(2))$. Then K_i is compact. So K_i is closed, since M is hausdorf. This yields that $M - K_i$ is open. In particular, since $K_i \subset U_i, \{U_i, M - K_i\}$ is an open cover M. Further, λ_i is continuous on U_i , since there it is the composition of two continuous functions, and λ_i is continuous on $M - K_i$, since there it is 0. This completes the argument that λ_i is continuous (if the resitriction of a function to each element of an open cover the entire space).

Next define $f_i: M \to \mathbf{R}^n$ by $f_i(p) = \lambda_i(p)\phi_i(p)$ if $p \in U_i$, and $f_i(p) = 0$ otherwise. Then f_i is continuous, since, similar to the argument we gave for λ_i above, f_i is continuous on U_i and $M - K_i$. Finally, define $f: M \to \mathbf{R}^{m(n+1)}$ by

$$f(p) = (\lambda_1(p), \dots, \lambda_m(p), f_1(p), \dots, f_m(p)).$$

Since each component function of f is continuous, f is continuous. We claim that f is the desired embedding. To this end, since f is continuous, and M is compact, it suffices to check that f is one-to-one.

Suppose that f(p) = f(q). Then $f_i(p) = f_i(q)$, and $\lambda_i(p) = \lambda_i(q)$. Since V_i cover $M, p \in V_j$ for some fixed j. Consequently

$$\lambda_j(q) = \lambda_j(p) \neq 0,$$

which yields that $q \in U_j$. Since $p, q \in U_j$, it follows, from definition of f_i , that

$$\lambda_j(p)\phi_j(p) = f_j(p) = f_j(q) = \lambda_j(q)\phi_j(q)$$

So we conclude that $\phi_i(p) = \phi_i(q)$, which yields that p = q.

Note that the above proof shows that if M can be covered by m open balls, then it may be embedded in $\mathbf{R}^{m(n+1)}$.

Exercise 6. Show that every compact manifold is metrizable.

Exercise 7. Show that there exists a compact topological space which is locally homeomorphic to a Euclidean space but is not Hausdorf. Conclude then that the previous theorem is not true if M is not Hausdorf.