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1.8 Immersions and Embeddings

Let X and Y be topological spaces and f: X — Y be a continuous map. We
say that f is an immersion provided that it is locally one-to-one, and f is an
embedding provided that f is a homeomorphism between X and f(X) with
respect to the subspace topology.

Exercise 1. Show that if X is compact, Y is Hausdorf and f: X — Y is a
one-to-one continuous map, then f is an embedding. Demonstrate, by means
of a counterexample, that the previous sentence may not be true if X is not
compact.

Exercise 2. Show that if f: M — N is an immersion between manifolds of
the same dimension, then f is open. In particular, if M is compact, and N
is connected but not compact, then there exists no immersion f: M — N.
(Hint: Use the invariance domain: if two subsets of R™ are homeomorphic
and one of them is open then the other is open as well. )

Exercise 3. Let C' C M be a compact set, and f: M — X be an immersion
which is one-to-one on C. Show that f is one-to-one on a neighborhood of

C.

Exercise 4. Show that RP? may be embedded in R*. (Hint: Consider the
restriction to the sphere of the mapping f: R® — R? given by f(z,y,2) =
(zy,yz, w2, 2% + 2y* + 32?).)

Theorem 5. Any compact manifold admits an embedding into a Euclidean
space.
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Proof. By definition, for every p € M there exists an open neighborhood U
of pin M and a homeomorphism ¢: U — R". Let V := ¢~!(int B"(1)),
where B"(1) is the unit ball in R™. Since ¢ is continuous, V' is open, and
thus we obtain an open covering of M. But M is compact, so there exists a
finite cover U;, 1 < i < m, of M and homeomorphisms ¢;: U; — R", such
that V; := ¢; *(int B"(1)) also cover M.

Now let A\: R" — R be a continuous map such that A # 0 on B"(1) and
A=0on R"— B"(2). Define \;: M — R by \;(p) := X¢;(p)) if p € U; and
Ai(p) = 0 otherwise. We claim that, since M is hausorf, ); is continuous.
To see this, let K; := ¢; '(B"(2)). Then K; is compact. So K; is closed,
since M is hausdorf. This yields that M — K; is open. In particular, since
K; c U;, {U;,M — K;} is an open cover M. Further, ); is continuous on
U;, since there it is the composition of two continuous functions, and A; is
continuous on M — K;, since there it is 0. This completes the argument that
A; is continuous (if the resitriction of a function to each element of an open
conver of a topological space is continuous, then that function is continuous
over the entire space).

Next define f;: M — R"™ by fi(p) = A\i(p)¢i(p) if p € U;, and fi(p) = 0
otherwise. Then f; is continuous, since, similar to the argument we gave for
A; above, f; is continuous on U; and M — K;. Finally, define f: M — R +1)
by

f)=(M(@), - Aalp), fi(p), -, fin(p))-
Since each component function of f is continuous, f is continuous. We claim

that f is the desired embedding. To this end, since f is continuous, and M
is compact, it suffices to check that f is one-to-one.

Suppose that f(p) = f(q). Then fi(p) = fi(q), and Ai(p) = Ai(g). Since
Vi cover M, p € V; for some fixed j. Consequently

Ai(q) = Ai(p) # 0,

which yields that ¢ € U;. Since p,q € Uj, it follows, from definition of f;,
that

Ai(p)¢;(p) = fi(p) = fila) = Ai(a)8;(q).
So we conclude that ¢;(p) = ¢;(¢), which yields that p = ¢. O

Note that the above proof shows that if M can be covered by m open
balls, then it may be embedded in R™™+1).



Exercise 6. Show that every compact manifold is metrizable.

Exercise 7. Show that there exists a compact topological space which is
locally homeomorphic to a Euclidean space but is not Hausdorf. Conclude
then that the previous theorem is not true if M is not Hausdorf.



