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2.7 Smooth submanifolds

Let N be a smooth manifold. We say that M ⊂ Nm is an n-dimensional
smooth submanifold of N , provided that for every p ∈ M there exists a local
chart (U,φ) of N centered at p such that

φ(U ∩ M) = Rn × {o},
where o denotes the origin of Rm−k.

Proposition 1. A smooth submanifold M ⊂ N is a smooth manifold.

Proof. Since M ⊂ N , M is Hausdorf and has a countable basis. For every
p ∈ M , let (U,φ) be a local chart of M with φ(U ∩M) = Rn×{o}. Set U :=
U ∩ M , and φ := φ|U . Then φ : U → Rn × {o} & Rn is a homeomorphism,
and thus M is a toplogical manifold. It remains to show that M is smooth.
To see this note that if (V ,ψ) is the restriction of another local chart of N
to M . Then ψ ◦ (φ)−1 = ψ ◦ φ−1|φ(U), which is smooth.

The above proof shows how M induces a differential structure on N .
Whenver we talk of a submanifold M as a smooth manifold in its own right,
we mean that M is equipped with the differential structue which it inherits
from N .

Theorem 2. Let f : Mn → Nm be a smooth map of constant rank k (i.e.,
rank(dfp) = k, for all p ∈ M). Then, for any q ∈ N , f−1(q) is an (n − k)-
dimensional smooth submanifold of M .

Proof. Let p ∈ f−1(q). By the rank theorem there exists local neighborhoods
(U,φ) and (V,ψ) of M and N centered at p and q respectively such that

f̃(x) := ψ ◦ f ◦ φ−1(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0).
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Next note that

φ(U ∩ f−1(q)) = φ(U) ∩ φ ◦ f−1 ◦ ψ−1(o) = Rn ∩ f̃−1(o) = {o}× Rn−k.

Thus f−1(q) is a smooth submanifold of N (To be quite strict, we need to
show that φ(U∩f−1(q)) = Rn−k×{o}, but this is easily achieved if we replace
ψ with θ ◦ ψ, where θ : Rm → Rm is the diffeomorphism which switches the
first k and last m − k cordinates).

Exercise 3. Use the previous result to show that Sn is smooth n-dimensional
submanifold of Rn+1.

Another application of the last theorem is as follows:

Example 4. SLn is a smooth submanifold of GLn. To see this define
f : GLn → R by f(A) := det(A). Then SLn = f−1(1), and thus it re-
mains to show that f has constant rank on GLn. Since this rank has to
be either 1 or 0 at each point (why?), it suffices to show that the rank is
not zero anywhere, i.e., it is enough to show that for every A ∈ GLn there
exists X ∈ TAGLn such that dfA(X) )= 0. To see this, let X = [α] where
α : (−ε, ε) → GLn is the curve given by α(t) := (1 − t)A. Note that, since
det is contiuous, det(α(t)) )= 0, for all t ∈ (−ε, ε), once we make sure that ε
is small enough. Thus α is indeed well-defined. Now recall that

dfA(X) := [f ◦ α] ∈ Tf(A)R.

Further recall that there is a canonical isomorphism θ : Tf(A)R → R given
by θ([γ]) = γ′(0). Thus

θ ◦ dfA(X) = (f ◦ α)′(0) = det(A) )= 0.

So, since θ is an isomorphism, dfA(X) )= 0, as desired.

Exercise 5. Show that On is a smooth n(n− 1)/2-dimensional submanifold
of GLn. (Hint: Define f : GLn → GLn by f(A) := AT A. Then show that
TAGLn is given by the equivalence class of curves of the form A + tB where
B is any n × n matrix. Finally, show that dfA(TAGLn) is isomorphic to the
space of symmetric n × n matrices).

Note that if A ∈ On, the det(A) = ±1. Thus On has two components.
The component with positive determinant is known as the special orthogonal
group SOn.

Exercise 6. Show that SO3 is diffeomorphic to RP3.
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2.8 Smooth immersions and embeddings

We say, f : M → N is a smooth embedding if f(M) is a smooth submanifold
of N and f : M → f(M) is a diffeomorphism. If f : M → N is a local
smooth embedding, i.e., every p ∈ M has an open neighborhood U such that
f : U → N is a smooth embedding, we say that f is a smoothe immersion.

Theorem 7. Let f : Mn → N be a smooth map. Then f is an immersion if
and only if f has constant rank n on M .

Proof. If f is an immersion, then it is obvious from the definition of immer-
sion (and the chain rule), that f has everywhere full rank (becuase then,
locally, f ◦ f−1 is the identity map).

Conversely, suppse that f has constan rank n. Then, by the rank theorem,
for every p ∈ M , there exists local charts (U,φ) and (V,ψ) of M and N
centered at p and f(p) respectively such that

f̃(x) = ψ ◦ f ◦ φ−1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

So f is one-to-one. Thus (since M is locally compact, and N is hausdorf) f
is a local homeomoprhim. In particular, after replacing U by a smaller open
neighborhood of p which has compact closure inside U , we may assume that
f−1 : f(U) → U is well defined and continuous (we can always perform such
a shrinking of U , since U is homeomoprphic to Rn; in particular, we may
replace U by φ−1(int B1(o))). Next note that

ψ(V ∩ f(U)) = ψ(f(U)) = f̃(φ(U)) = f̃(Rn) = Rn × {o}.
Thus f(U) is a smoooth submanifold of N . It remains, therefore, only to
show that f−1 is smooth. To this end note that f̃−1 : Rn × {o} → f(U) is
well defined. Further, since, as we showed above, ψ : f(U) → Rn × {o}, it
follows that

φ−1 ◦ f̃−1 ◦ ψ = f−1

on U . Since each of the maps on the left hand side of the above equation is
smooth, f−1 is smooth.

The following corollaries of the above theorem are immediate:

Corollary 8. Let f : M → N be a smooth map. Then f is a smooth em-
bedding if and only if f is a homeomorphism onto its image and f has full
rank.
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Corollary 9. Let f : M → N be a smooth map, and suppose that M is
compact. Then f is a smooth embedding if and only if f is one-to-one and
has full rank.

Next we are going to use the last corollary to show that

Theorem 10. Every smooth compact manifold Mn may be smoothly embed-
ded in a Euclidean space.

The proof of the above is a refinement of the proof we had given earlier
for the existence of topological embeddings in Euclidean space. First we need
to prove the following basic fact:

Lemma 11 (Existence of the smooth step function). For any 0 < a <
b there exits a smooth function σa,b : R → R such that σa,b = 0 on (−∞, r1]
and σa,b = 1 on [r2,∞).

Proof. Define φ : R → R by

φ(x) :=

{
0 if x ≤ 0,

e−1/x if x > 0.

Then φ is smooth. Next define θ : R → R by

θ(x) := φ(x − a)φ(b − x).

Then θ is smooth, θ > 0 on (a, b), and θ = 0 on (−∞, a]∪ [b,∞). Finally set

σa,b(x) :=

∫ a

x θ(x) dx∫ b

a θ(x) dx
.

Exercise 12. Show that the function φ in the above lemma is smooth.

Now we are ready to prove the main result of this section.

Proof of Theorem 10. As we had argued earlier, since M is compact, there
exists a finite cover Ui, 1 ≤ i ≤ m, of M and homeomorphisms φi : Ui → Rn,
such that Vi := φ−1

i (int Bn(1)) also cover M .
Now define λ : Rn → R by λ(x) := σ1,2(‖x‖), where σ is the step fucntion

defined above. Since ‖ · ‖ is smooth on Rn − {o} and λ is constant on an
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open neighborhood of o, it follows that that λ is smooth. In particular note
that λ = 1 on Bn(1) and λ = 0 on Rn − Bn(2). So if we define λi : M → R
by settting λi(p) := λ(φi(p)) in case p ∈ Ui and λi(p) := 0 otherwise, then
λi = 1 on Vi and λi = 0 on M − φ−1

i (Bn(2)). In addition, we claim that,
since M is hausorf, λi is smooth. To see this, let Ki := φ−1

i (Bn(2)). Then Ki

is compact. So Ki is closed, since M is hausdorf. This yields that M − Ki

is open. In particular, since Ki ⊂ Ui, {Ui, M − Ki} is an open cover of M .
Since λi is smooth on Ui (where it is the composition of smooth functions)
and λi is smooth on M − Ki (where λi = 0) it follows that λi is smooth.

Next define fi : M → Rn by fi(p) = λi(p)φi(p) if p ∈ Ui, and fi(p) = 0
otherwise. Then fi is smooth, since, similar to the argument we gave for λi

above, fi is smooth on Ui and M − Ki. Finally, define f : M → Rm(n+1) by

f(p) =
(
λ1(p), . . . ,λm(p), f1(p), . . . , fm(p)

)
.

Since each component function of f is smooth, f is smooth. We claim that f
is the desired embedding. To this end, since f is smooth, and M is compact,
it suffices to check that f is one-to-one and is an immersion.

To see that f is an immersion, note that, since Vi cover M and λi = 1 on
Vi, at least one component function fi is a diffeomorphism of a neighborhood
of p into Rn, and so has rank n at p. This implies that the rank of f is at
least n, which since dim(M) = n, implies in turn that rank of f is equal to
n.

To see that f is one-to-one, suppose that f(p) = f(q). Then fi(p) = fi(q),
and λi(p) = λi(q). Since Vi cover M , p ∈ Vj for some fixed j. Consequently

λj(q) = λj(p) )= 0,

which yields that q ∈ Uj. Since p, q ∈ Uj, it follows, from definition of fi,
that

λj(p)φj(p) = fj(p) = fj(q) = λj(q)φj(q).

So we conclude that φj(p) = φj(q), which yields that p = q.

2.9 Tangent bundle

If Mn is a smooth manifold then we set

TM := ∪
p∈M

TpM.
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Note that if X ∈ TM , then X ∈ TpM for a unique p ∈ M . This defines a
natural projection π : TM → M .

Recall that for each p ∈ Rn there exists a canonical isomorphism θp : TpRn →
Rn (given by θp[α] := α′(0)). Using this we may define a bijection θ : TRn →
Rn × Rn by setting:

θ(X) :=
(
π(X), θπ(X)(X)

)
.

We topologize TRn by declaring that θ is a homeomorphism, i.e., we say
that U ⊂ TRn is open if and only if θ(U) is open. Further, we may use θ to
endow TRn with the standard differential structure of Rn. Thus TRn is a
smooth 2n-dimensional manifold.

Next note that if f : M → N is smooth then we may define a mapping
df : TM → TN by setting df |TpM := dfp. If f is a diffeomorphism, then df is
a bijection. Thus if (U,φ) is a local chart of M , then we obtain a bijection
from TU to Rn × Rn given by

θφ(X) :=
(
φ(p), θφ(p)

(
dφ(X)

))
, where p := π(X).

Requiring θ to be a homeomorphism topologizes TM . More explicitly, note
that if (Ui,φi) is an atlas for M , then TUi cover TM . We say that V ⊂ TM
is open if θφi(V ∩ TUi) is open for every i. We define the tangent bundle of
M as TM endowed with this topology. In particular, (TUi, θφi) is an atlas
for TM , and thus TM is a 2n-manifold, once we check that:

Exercise 13. Show that TM is hausdorff and has a countable basis.

Furthermoe we can show:

Proposition 14. If Mn is a smooth manifold, then TM is a smooth 2n-
manifold.

Proof. It remains only to verify that the local charts (TUi, θφi) are compat-
ible, i.e., θφi ◦ θ−1

φj
is smooth (whenever TUi ∩ TUj )= ∅). To see this let

(x, y) ∈ Rn × Rn, and suppose that

X := θ−1
φj

(x, y).

Then θφj(X) = (x, y). Thus x = φj(p), where p := π(X), and y =
θx

(
dφj(X)

)
. So we have

p = φ−1
j (x), and X = dφ−1

j (θ−1
x (y)).

6



Now note that

θφi ◦ θ−1
φj

(x, y) = θφi(X)

=
(
φi(p), θφi(p)

(
dφi(X)

))
=

(
φi ◦ φ−1

j (x), θφi◦φ−1
j (x)

(
d(φi ◦ φ−1

j )(θ−1
x (y))

))
.

Thus, since φi ◦ φ−1
j is smooth, it follows that θφi ◦ θ−1

φj
is smooth.

A vector field is a mapping X : M → TM such that π(X(p)) = p for all
p ∈ M . We say that Mn is parallelizable if there are n continuos vector fields
on M which are linearly independent at each point.

Exercise 15. Show that TM is homeomprphic to M ×Rn if and only if M
is parallelizable. In particular, TS1 is homeomorphic to S1 × R.

Suppose that to each TpM there is associated an inner product, i.e., a
positive definite symmetric bilinear map gp : TpM × TpM → R. Then we
may define a mapping f : TM → R by f(X) := gπ(X)(X, X). If f is smooth,
we say that g is a smooth Riemannian metric, and (M, g) is a Riemannian
manifold. For example, if M is any smooth manifold, and f : M → Rn is
any smooth immersion, then we may define a Riemannian metric on f by

gp(X, Y ) :=
〈
dfp(X), dfp(Y )

〉
,

where 〈·, ·〉 is the standard inner product on Rn. In particular, since every
compact manifold admits a smooth embedding into a Euclidean space, it
follows that every compact smooth manifold admits a smooth Riemannian
metric. If M is a smooth Riemannian manifold then the unit tangnet bundle
UTM is defined as the set of tangent vectors of M of length 1.

Exercise 16. Show that the unit tangent bundle of a smooth n-manifold is
a smooth 2n − 1 manifold.

Exercise 17. Show that T 1S2 is diffeomorphic to RP3.
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