
COMPARISON FORMULAS FOR TOTAL MEAN CURVATURES
OF RIEMANNIAN HYPERSURFACES

MOHAMMAD GHOMI

Abstract. We devise some differential forms after Chern to compute a family of
formulas for comparing total mean curvatures of nested hypersurfaces in Riemannian
manifolds. This yields a quicker proof of a recent result of the author with Joel Spruck,
which had been obtained via Reilly’s identities.

1. Introduction

The total rth mean curvature of an oriented C1,1 hypersurface Γ in a Riemannian
n-manifold M , for 0 ≤ r ≤ n− 1, is given by

Mr(Γ) :=

∫
Γ
σr(κ),

where κ := (κ1, . . . , κn−1) denotes the principal curvatures of Γ, with respect to the
choice of orientation, and σr : Rn−1 → R is the rth symmetric function; so

σr(κ) =
∑

1≤i1<···<ir≤n−1

κi1 . . . κir .

We set σ0 := 1, and σr := 0 for r ≥ n by convention. Thus M0(Γ) is the (n − 1)-
dimensional volume, M1(Γ) is the total mean curvature, and Mn−1(Γ) is the total
Gauss-Kronecker curvature of Γ. Up to multiplicative constants, these quantities form
the coefficients of Steiner’s polynomial, and are known as quermassintegrals when Γ is a
convex hypersurface in Euclidean space. The following result was established in [6, Thm.
3.1] generalizing earlier work in [4, Thm. 4.7]:

Theorem 1.1 ([6]). Let M be a compact orientable Riemannian n-manifold with bound-
ary components Γ1, Γ0. Suppose there exists a C1,1 function u : M → [0, 1] with ∇u 6= 0

on M , and u = i on Γi. Let κ := (κ1, . . . , κn−1) be principal curvatures of level sets
of u with respect to en := ∇u/|∇u|, and let e1, . . . , en−1 be an orthonormal set of the
corresponding principal directions. Then, for 0 ≤ r ≤ n− 1,

(1) Mr(Γ1)−Mr(Γ0) = (r + 1)

∫
M
σr+1(κ)

+

∫
M

(
−
∑

κi1 . . . κir−1Kirn +
1

|∇u|
∑

κi1 . . . κir−2 |∇u|ir−1Ririr−1irn

)
,

where |∇u|i := ∇ei |∇u|, Rijkl = 〈R(ei, ej)ek, el〉 are components of the Riemann curva-
ture tensor ofM , Kij = Rijij is the sectional curvature, and the sums range over distinct
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values of 1 ≤ i1, . . . , ir ≤ n−1, with i1 < · · · < ir−1 in the first sum, and i1 < · · · < ir−2

in the second sum.

In [6], the above theorem was established via Reilly’s identities [7]. Here we present
a somewhat shorter and conceptually simpler proof using differential forms which we
construct after Chern [3], as Borbély [1, 2] had also done earlier. More specifically, we
devise a differential (n− 1)-form Φr on M so thatMr(Γi) correspond to integration of
Φr on Γi. Then computing the exterior derivative dΦr yields (1) via Stokes theorem.
Various applications of Theorem 1.1 are developed in [4, 5], including total curvature
bounds, and rigidity results in Riemannian geometry. See also [6] for more results of
this type.

2. Basic Formulas

As in the statement of Theorem 1.1, we let M be a compact orientable Riemannian
n-manifold with boundary ∂M = Γ1 ∪ Γ0. Furthermore, 〈·, ·〉 denotes the metric on M ,
with induced norm | · | := 〈·, ·〉1/2, connection ∇, and curvature operator

R(X,Y )Z := ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z,

for vector fields X, Y , Z on M . The sectional curvature of M with respect to a pair of
orthonormal vectors x, y in the tangent space TpM may be defined as

K(x, y) := 〈R(X,Y )X,Y 〉,

where X, Y are local extensions of x, y. With u as in the statement of Theorem 1.1,
and for 0 ≤ t ≤ 1, let Γt := u−1(t) be the level hypersurface of u at height t. Since u
is C1,1, Γt is twice differentiable almost everywhere by Rademacher’s theorem. At every
such point p of Γt, let ei, i = 1, . . . , n, be the orthonormal frame mentioned above, i.e.,

en :=
∇u
|∇u|

,

and e1, . . . , en−1 form a set of orthonormal principal directions of Γt at p. Furthermore
we assume that ei is positively oriented, i.e.,

(2) dvolM (e1, . . . , en) = 1,

where dvolM denotes the volume form of M . We call ei a principal frame associated to
(level sets of) u. Let θi be the corresponding dual one forms on TpM given by

(3) θi(ej) = δij ,

where δij is the Kronecker function. Note that ei may be extended to a C1 orthonormal
frame ei in a neighborhood of p in M so that en = en and thus e1, . . . , en−1 remain
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tangent to Γt (though they may no longer be principal directions). The corresponding
connection 1-forms on TpM are then given by

ωi
j(·) := 〈∇(·)ej , ei〉 = −〈ej ,∇(·)ei〉 = −ωj

i (·),

for 1 ≤ i, j ≤ n. Since ei, i = 1, . . . , n − 1 are principal directions, and en = en is the
normal of Γt,

(4) ωi
n(ej) = 〈∇ejen, ei〉 = δijκi, 1 ≤ i, j ≤ n− 1,

where κi are the principal curvatures of Γt with respect to en. We also record that,

(5) ωi
n(en) =

〈∇en∇u, ei〉
|∇u|

=
〈∇ei∇u, en〉
|∇u|

=
〈∇ei∇u,∇u〉
|∇u|2

=
|∇u|i
|∇u|

, 1 ≤ i ≤ n− 1,

where |∇u|i = ∇ei |∇u|, and the second equality is due to the symmetry of the Hessian
of u. Next, we compute ωj

i for i, j 6= n. We may assume that e1, . . . , en−1 are parallel
translations of e1, . . . , en−1 on Γt, i.e., ∇eiej = 0, for 1 ≤ i, j ≤ n − 1 where ∇ := ∇>

is the induced connection on Γt. Then ωj
i (ek) = 〈∇ekej , ei〉 = 0, for 1 ≤ i, j, k ≤ n− 1.

Furthermore, we may assume that e1, . . . , en−1 are parallel translated along the integral
curve of en. Then ∇enei = 0 for 1 ≤ i ≤ n − 1, which yields ωj

i (en) = 0, for 1 ≤ i, j ≤
n− 1. So we record that

(6) ωj
i = 0, 1 ≤ i, j ≤ n− 1.

Cartan’s structure equations state that

(7) dθi =
n∑

j=1

θj ∧ ωi
j and dωi

j = Ωi
j −

n∑
k=1

ωk
j ∧ ωi

k,

where Ωi
j are the curvature 2-forms given by

Ωi
j(e`, ek) := −

〈
R(e`, ek)ej , ei

〉
=
〈
R(e`, ek)ei, ej

〉
=: R`kij .

Note that R`kij = −Rk`ij . We also set

(8) Kij := K(ei, ej) = Rijij .

Finally we record some basic formulas from exterior algebra which will be used in the
next section. If λ is a k-form, and φ is an `-form, then

(9) λ ∧ φ(e1, . . . , ek+`) =
∑

ε(i1 . . . ik+`)λ(ei1 , . . . , eik)φ(eik+1
, . . . , eik+`

)

where the sum ranges over 1 ≤ i1, . . . , ik+` ≤ k+ `, with i1 < · · · < ik, and ik+1 < · · · <
ik+`; furthermore, ε(i1 . . . in) := 1, or −1 depending on whether i1 . . . in is an even or
odd permutation of 1 . . . n respectively. Note that

(10) ε(i1 . . . ir−1nir+1 . . . in−1) = (−1)n−1−rε(i1 . . . in−1),
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since ε(i1 . . . in−1) = ε(i1 . . . in−1n). The following identities will also be useful

d(θ1 ∧ · · · ∧ θk) =
∑

ε(i1 . . . ik) dθi1 ∧ θi2 ∧ · · · ∧ θik(11)

= (−1)k−1
∑

ε(i1 . . . ik) θi1 ∧ · · · ∧ θik−1 ∧ dθik ,

where the sums range over 1 ≤ i1, . . . , ik ≤ k with i2 < · · · < ik in the first sum, and
i1 < · · · < ik−1 in the second sum.

3. Proof of Theorem 1.1

Let θi be the dual 1-forms, and ωi
j be the connection forms corresponding to the

principal frame ei of u discussed in the last section. For 0 ≤ r ≤ n − 1, we define the
(n− 1)-forms

Φr :=
∑

ε(i1 . . . in−1)ωi1
n ∧ · · · ∧ ωir

n ∧ θir+1 ∧ · · · ∧ θin−1 ,

where the sum ranges over 1 ≤ i1, . . . , in−1 ≤ n− 1 with i1 < · · · < ir, and ir+1 < · · · <
in−1. For r = n− 1, this form appears in Chern [3], and later in Borbély [2] (where it is
denoted as “Φ0” and “Φ” respectively). The form Φ1 has also been used by Borbély in
[1]. One quickly checks, using (3), (4), and (9), that

Φr(e1, . . . , en−1) = σr(κ),(12)

which is the main feature of these forms. Recall that Γt := u−1(t) is the level hypersur-
face of u at height t, for 0 ≤ t ≤ 1. Let Φr|Γt denote the pull back of Φr via the inclusion
map Γt →M . Since Φr|Γt is an (n− 1)-form on Γt, it is a multiple of the volume form
of Γt, which is given by

(13) dvolΓt(e1, . . . , en−1) := dvolM (en, e1, . . . , en−1) = ε(n1 . . . n− 1) = (−1)n−1.

Note that here we have used the assumption (2) that ei is positively oriented. So it
follows from (12) and (13) that

(14) Φr|Γt = (−1)n−1σr(κ) dvolΓt .

This shows that Φr depends only on en, not the choice of e1, . . . , en−1 (which also follows
from transformation rules for ωi

n and θi under a change of frame ei → e′i with en = e′n;
see [1, p. 269]). In addition, (14) shows that

Mr(Γt) =

∫
Γt

σr(κ) :=

∫
Γt

σr(κ) dvolΓt = (−1)n−1

∫
Γt

Φr.

Consequently, by Stokes theorem, for the left hand side of (1) we have

(15) Mr(Γ1)−Mr(Γ0) = (−1)n−1

∫
∂M

Φr = (−1)n−1

∫
M
dΦr.

Here we have used the assumption that u|Γ1 > u|Γ0 , which ensures that en points
outward on Γ1 and inward on Γ0 with respect to M . Furthermore, since Φr depends
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only on en and u is C1,1, it follows that Φr is Lipschitz (in local coordinates). Hence dΦr

is integrable, and the use of Stokes theorem here is justified.
Next we compute dΦr. Since ωi1

n ∧ · · · ∧ωir
n is an r-form, the product rule for exterior

differentiation yields that

(16) dΦr = (−1)r
∑

ε(i1 . . . in−1)ωi1
n ∧ · · · ∧ ωir

n ∧ d
(
θir+1 ∧ · · · ∧ θin−1

)
+
∑

ε(i1 . . . in−1) d
(
ωi1
n ∧ · · · ∧ ωir

n

)
∧ θir+1 ∧ · · · ∧ θin−1 ,

where the sums still range over i1 < · · · < ir and ir+1 < · · · < in−1. By (11), the
structure equations (7), and (6), the first term in (16) reduces to

(−1)r+1
∑

ε(i1 . . . in−1)ωi1
n ∧ · · · ∧ ωir

n ∧ ωir+1
n ∧ θn ∧ θir+2 ∧ · · · ∧ θin−1

= (−1)n−1
∑

ε(i1 . . . in−1)ωi1
n ∧ · · · ∧ ωir

n ∧ ωir+1
n ∧ θir+2 ∧ · · · ∧ θin−1 ∧ θn

= (−1)n−1(r + 1)Φr+1 ∧ θn,

where the sums now range over i1 < · · · < ir, and ir+2 < · · · < in−1. The factor
(r + 1) appears in the last line because definition of Φr+1 requires that i1 < · · · < ir+1.
Applying (11) and (7) also to the second term in (16), we obtain

(17) dΦr = (−1)n−1(r + 1)Φr+1 ∧ θn

+ (−1)r−1
∑

ε(i1 . . . in−1)ωi1
n ∧ · · · ∧ ωir−1

n ∧ Ωir
n ∧ θir+1 ∧ · · · ∧ θin−1 ,

where the sum ranges over i1 < · · · < ir−1, and ir+1 < · · · < in−1. For r = 1, this
formula had been computed earlier by Borbély [1, (6)].

By (15), it remains to show that (−1)n−1
∫
M dΦr yields the right hand side of (1). To

see this first note that, by (9) and (12),

Φr+1 ∧ θn = Φr+1 ∧ θn(e1, . . . , en) dvolM = σr+1(κ) dvolM .

Thus the first term on the right hand side of (17) quickly yields the first integral on the
right hand side of (1). To obtain the second integral there, we evaluate the sum in (17)
at ei, which yields∑

ε(j1 . . . jn) ε(i1 . . . in−1)ωi1
n (ej1) . . . ωir−1

n (ejr−1)Ωir
n (ejr , ejr+1)θir+1(ejr+2) . . . θin−1(ejn)

=
∑

ε(j1 . . . jr+1ir+1 . . . in−1) ε(i1 . . . in−1)ωi1
n (ej1) . . . ωir−1

n (ejr−1)Rjrjr+1irn,

where the sums range over 1 ≤ j1 . . . jn ≤ n with jr < jr+1 by (9), and the range for
1 ≤ i1, . . . , in−1 ≤ n− 1 remains as in (17), i.e., i1 < · · · < ir−1, and ir+1 < · · · < in−1.
The last sum may be partitioned into A+B, where A consists of terms with jr+1 = n,
and B of terms with jr+1 6= n. If jr+1 = n, then j1, . . . , jr−1 6= n, which yields ik = jk+1
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for k = 1, . . . , r − 2 by (4). This in turn forces jr = ir, as they are the only remaining
indices. So by (10) and (8),

A =
∑

ε(i1 . . . ir−1nir+1 . . . in−1) ε(i1 . . . in−1)κi1 . . . κir−1Rirnirn

= (−1)n−r−1
∑

κi1 . . . κir−1Kirn,

where we still have i1 < · · · < ir−1. This yields the first term in the second integral in
(1), after multiplication by the sign factors (−1)r−1 from (17) and (−1)n−1 from (15),
which ensures the desired sign −1. Next, to compute B, note that if jr+1 6= n, then
jr 6= n either, since jr < jr+1, which forces jk = n, for some 1 ≤ k ≤ r − 1. We may
assume k = r − 1 after reindexing. Then j1, . . . , jr−2 6= n, which yields ik = jk for
k = 1, . . . , r − 2 by (4). So by (5)

B =
∑

ε(i1 . . . ir−2njrjr+1ir+1 . . . in−1) ε(i1 . . . in−1)κi1 . . . κir−2

|∇u|ir−1

|∇u|
Rjrjr+1irn

=
∑

ε(i1 . . . ir−2nir−1 . . . in−1) ε(i1 . . . in−1)κi1 . . . κir−2

|∇u|ir−1

|∇u|
Rir−1irirn

= (−1)n−r
∑

κi1 . . . κir−2

|∇u|ir−1

|∇u|
Ririr−1irn,

where the second equality holds because {jr, jr+1} = {ir−1, ir}, since these are the only
remaining indices. We may assume then that jr = ir−1, and jr+1 = ir, since switching
jr and jr+1 does not change the sign of the right hand side of the first equality for B.
The sign (−1)n−r in the third equality is due to (10) and switching two indices in the
Riemann tensor coefficient. Finally note that the restriction on the range of indices in
the last sum is now i1 < · · · < ir−2, since ir−1 corresponds to jr−1, and we set r− 1 = k

during the reindexing above. So B yields the second term in the second integral in (1),
after multiplication by (−1)r−1 and (−1)n−1, as was the case for A, which ensures the
desired sign +1. This concludes the proof of Theorem 1.1.
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