
POINT SELECTIONS FROM JORDAN DOMAINS
IN RIEMANNIAN SURFACES

IGOR BELEGRADEK AND MOHAMMAD GHOMI

Abstract. Using fiber bundle theory and conformal mappings, we continuously
select a point from the interior of Jordan domains in Riemannian surfaces. This
selection can be made equivariant under isometries, and take on prescribed values
such as the center of mass when the domains are convex. Analogous results for
conformal transformations are obtained as well. It follows that the space of Jordan
domains in surfaces of constant curvature admits an isometrically equivariant
strong deformation retraction onto the space of round disks. Finally we develop
a canonical procedure for selecting points from planar Jordan domains.

1. Introduction

How can one continuously select a point from the interior of Jordan domains in
Euclidean plane R2? Eugenio Calabi asked this question from the second-named
author in 1995. In [6] we provided an answer for smooth domains. Here we extend
that result to the topological category, and develop some of its applications.

Let M be a connected Riemannian 2-manifold and B2 be the closed unit disk
in R2. We say D ⊂ M is a Jordan domain if it forms the image of a continuous
injective map B2 →M , called a parametrization of D. The space of Jordan domains
D(M) is the collection of all Jordan domains in M with the topology induced by
their parametrizations, i.e., a pair of domains are close provided that they admit
parametrizations which are C0-close. A center on A ⊂ D(M) is a continuous map
c : A → M such that c(D) ∈ int(D) for all D ∈ A, where int denotes the interior.
Let Iso(M) be the group of isometries of M , and G ≤ Iso(M) be a closed subgroup.
We say that c is G-equivariant if for any ρ ∈ G and D ∈ A, ρ(D) ∈ A, i.e., A is
G-invariant, and ρ(c(D)) = c(ρ(D)). We show:

Theorem 1.1. Any G-equivariant center on a closed G-invariant subset of D(M)
may be extended to a G-equivariant center on D(M).

There are a number of classical point selections, such as the center of mass or
Steiner point, from the interior of convex domains in R2 [19] [28, Chap. 12] [43, Sec.
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5.4.1], or other Riemannian surfaces [17,18,20]. By Theorem 1.1, any of these selec-
tions may be extended to a G-equivariant center on nonconvex Jordan domains. This
result had been established earlier for C1 Jordan domains [6] via equivariant topol-
ogy. Here we use conformal mappings to enhance those techniques, as described in
Sections 2 and 3 below. We will also obtain analogues of Theorem 1.1 for conformal
transformations (see Theorem 3.10 and Note 3.11). Some applications will be dis-
cussed in Section 4. In particular we show that D(R2) is equivariantly contractible
with respect to the orthogonal group O(2), and D(S2) admits an isometrically equi-
variant strong deformation retraction onto the space of hemispheres (Theorem 4.2).
Finally in Section 5 we use the notion of reach in the sense of Federer to develop
a canonical procedure for constructing centers for smooth Jordan domains in R2

(Theorem 5.4).
Our central results here may be framed in terms of continuous selections from

multivalued maps, which is a well-known area in functional analysis [37,39,40] orig-
inating with Michael [25–27]. In those results, however, one usually assumes that
the maps take their value from subsets which satisfy some notion of convexity. The
closest antecedent for this work and the authors earlier paper [6], which applies to
nonconvex objects, is due to Pixley [34] who solved a problem of Bing on point se-
lection from curve segments. We should also mention the notion of geodesic center
for polygonal domains in R2 [1, 35], which is well-known in computational geome-
try; however, this point does not always lie in the interior, and is well-defined only
when the boundary is rectifiable. Selection theorems have important applications in
optimal control and differential inclusion [33].

Note 1.2. Daniel Asimov [2] reports that around 1977 he discussed with Calabi
an intrinsic version of the problem we study here, which may be described as fol-
lows. Let Bn denote the closed unit ball in Euclidean space Rn, and Met(Bn) be
the space of smooth Riemannian metrics on Bn. A diffeomorphism f : Bn → Bn is
an isometry with respect to g ∈ Met(Bn), or a g-isometry, provided that f∗g = g,
where (f∗g)p(v, w) := gf(p)(dfp(v), dfp(w)), for p ∈ Bn and v, w ∈ Rn. Does there
exist a continuous map c : Met(Bn) → Bn which is equivariant under isometries,
i.e., for every g ∈ Met(Bn) and g-isometry f : Bn → Bn, f(c(g)) = c(g)? A nec-
essary condition is that n ≤ 5 because in higher dimensions there exist groups of
diffeomorphisms acting on Bn without a common fixed point [4].

2. General Centers

We start by establishing Theorem 1.1 in the case where G is trivial:

Proposition 2.1. Any center on a closed subset of D(M) can be extended to a center
on D(M).

The main idea here is to frame the problem in terms of the existence of a section
of a fiber bundle. The principal fact we need is:

Lemma 2.2 (Palais [32], Thm. 9). If a locally trivial fiber bundle has a metrizable
base and metrizable contractible fibers, then it admits a global section. Furthermore,
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any partial section defined on a closed subset of the base may be extended to a global
section.

To utilize the above lemma, we first establish the following fact. Let Emb0(B2,M)
denote the space of injective continuous maps B2 → M , with its standard C0-
topology as a subspace of continuous maps C0(B2,M).

Lemma 2.3. D(M) is metrizable.

Proof. Let δ : M ×M → R be the metric of M . Given D1, D2 ∈ D(M), set

(1) d(D1, D2) := inf
{

sup
p∈B2

δ
(
f1(p), f2(p)

) ∣∣ fi ∈ Emb0(B2,M), fi(B
2) = Di

}
.

It is not difficult to check that d is a metric on D(M). �

Next we associate a fiber bundle to D(M) whose total space is generated by
interior points of the domains:

E(M) :=
{

(D, p) | D ∈ D(M), p ∈ int(D)
}
.

Let π : E(M) → D(M) be the projection given by π(D, p) := D. Then each fiber
π−1(D) is homeomorphic to int(B2), which is contractible. To show that π is locally
trivial, we need the following fact. A model plane is either the Euclidean plane R2,
the unit sphere S2, or the hyperbolic plane H2. Let o denote the origin of R2.

Lemma 2.4 (Carathéodory). Let M be a model plane. For any domain D ∈ D(M),
point p ∈ int(D), and vector u ∈ TpM \ {0}, there exists a unique continuous map

f = fD,p,u ∈ Emb0(B2,M)

with f(B2) = D, such that f is conformal on int(B2), f(o) = p, and dfo((1, 0)) is
parallel to u. Furthermore, if Di ∈ D(M) is a sequence of domains converging to D,
then fDi,p,u converges to f .

Proof. The first statement is Carathéodory’s refinement of Riemann mapping theo-
rem [22, Thm 5.1.1], which ensures that conformal maps from the interior of B2 to
the interior of a Jordan domain D ⊂M extend to a homeomorphism B2 → D. The
second statement is a consequence of Carathéodory’s kernel theorem, and follows
quickly from [36, Thm. 2.11]. �

We now show that π is locally trivial, which will conclude the proof of Propo-
sition 2.1. Pick D0 ∈ D(M), and fix p0 ∈ int(D0), u0 ∈ Tp0M \ {0}. Let U be
a neighborhood of D0 in D(M) so small that p0 belongs to the interior of every
domain D ∈ U . There exists then, for every D ∈ U , a canonical homeomorphism
fD := fD,p0,u0 : B2 → D given by Lemma 2.4. Now the map

π−1(U) 3 (D, p)
φ7−→
(
D, f−1D (p)

)
∈ U × int(B2)

yields the desired trivialization. In particular note that D 7→ fD is continuous by
Lemma 2.4, which ensures that D 7→ f−1D and consequently φ are continuous.
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3. Equivariant Centers

Here we modulate the fiber bundle approach in the last section by the action
of G ≤ Iso(M) to complete the proof of Theorem 1.1. Similar to [6] this involves
stratifying D(M) by its orbit types under G, and extending the center inductively
to each stratum; however, here we can implement this procedure more directly via
conformal maps. A topological group G acts properly on M provided that for any
compact set K ⊂ M , the collection of g ∈ G such that g(K) ∩ K 6= ∅ is compact
[24, Prop. 9.12]. It is well-known that Iso(M) acts properly on M [21, Thm. I.4.7],
but this is not the case for the group Con(M) of conformal transformations:

Lemma 3.1. If G ≤ Con(R2) acts properly on R2, then G ≤ Iso(R2).

Proof. Let g ∈ G. Then g(x) = rρ(x) + b, where r > 0, ρ ∈ O(2), and b ∈ R2.
Note that g ∈ Iso(R2) if and only if r = 1. If r 6= 1, then I − rρ is invertible, where
I is the identity transformation. Consequently g fixes x0 := (I − rρ)−1(b), which
yields g(x) = x0 + rρ(x− x0). So gn(x) = x0 + rnρn(x− x0), and |gn(x)− x0| = rn

for integers n. Thus the set {gn(x1)} is unbounded for any x1 ∈ R2 \ {x0}. Hence
{gn} is not a compact subset of G, since {gn(x1)} is the image of {gn} under the
continuous mapping {gn} → R2, given by x1 7→ gn(x1). On the other hand, if
K := x0 + B2, then gn(K) = x0 + rnB2. So gn(K) ∩K = (rnB2) ∩ B2 6= ∅, which
is not possible if G acts properly. Hence r = 1, which means g ∈ Iso(R2). �

We may assume that M is simply connected after replacing it with its universal
Riemannian cover, and replacing G with the group of all lifts of elements of G to
the covering space, because any equivariant center on the universal cover descends
to an equivariant center on M . Then M (which may not be complete) is conformal
to a complete Riemannian manifold M [30, Thm. 1] which we may assume to be
a model plane by the uniformization theorem. Now G ≤ Con(M). We claim that
G ≤ Iso(M). This is immediate when M = H2, since Con(H2) = Iso(H2). If
M = S2, then Iso(M) is compact. So G is a compact subgroup of Con(S2). Hence
G is conjugate to a subgroup of Iso(S2) (which means that it is an isometry group of
an isometric copy of S2). If M = R2, note that since G ≤ Iso(M), it acts properly
on M , and therefore on M . Hence G ≤ Iso(M) by Lemma 3.1. In short, after
replacing M with M , we may assume that M is a model plane. To prove Theorem
1.1 it remains to show:

Proposition 3.2. Let M be a model plane. Then any G-equivariant center on a
closed G-invariant subset of M may be extended to a G-invariant center on M .

For the rest of this section we assume thatM is a model plane, and G ≤ Iso(M) is
a closed subgroup. For any D ∈ D(M), let Sym(D) ≤ G be the maximal subgroup
which maps D onto itself, and Fix(D) be the set of points in D which are fixed by
all ρ ∈ Sym(D). We say ρ ∈ Sym(D) is a rotation if it preserves the orientation,
and is a reflection if it reverses the orientation of M . Let us record that:

Lemma 3.3. For any D ∈ D(M), Sym(D) is either (i) the trivial group, (ii) a group
of order 2 generated by a reflection, (iii) a group which contains a cyclic subgroup of
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rotations. In these cases Fix(D) is equal respectively to (i) D, (ii) a simple geodesic
arc with relative interior in int(D) and end points on ∂D, or (iii) a single point in
the interior of D.

So D(M) may be partitioned into subsets

Dk(M) :=
{
D ∈ D(M) | dim

(
Fix(D)

)
= k

}
,

for k = 0, 1, 2. Let Dk(M) denote the closure of Dk(M) in D(M).

Lemma 3.4. For all 0 ≤ k ≤ 2, Dk(M) ⊂
⋃k
`=0D`(M). Furthermore, if k 6= 1,

then Dk(M) =
⋃k
`=0D`(M).

Proof. Let D ∈ Dk(M). Then there exists a sequence Di ∈ Dk(M) converging to
D. Let ρi ∈ Sym(Di), and d be the metric on D(M) given by (1). Then

d(ρi(D), D) ≤ d(ρi(D), Di) + d(Di, D) = 2d(D,Di),

since d(ρi(D), Di) = d(ρi(D), ρi(Di)) = d(D,Di). So ρi(D) → D. Each ρi fixes
some point pi ∈ Di by Brouwer’s fixed point theorem. Since Di → D, the sequence
pi is bounded. Since Iso(M) is locally compact, and G is closed, it follows that ρi
converges to some ρ ∈ G, after passing to a subsequence. So ρi(D) → ρ(D). Now
note that

d(ρ(D), D) ≤ d(ρ(D), ρi(D)) + d(ρi(D), ρi(Di)) + d(ρi(Di), D)(2)
= d(ρ(D), ρi(D)) + d(D,Di) + d(Di, D).

So ρ(D) = D which yields ρ ∈ Sym(D). Thus Sym(Di) converge to some subgroup
of Sym(D). Since reflections converge to a reflection, and rotations to a rotation, it
follows from Lemma 3.3 that D ∈ D`(M) for some ` ≤ k. So Dk(M) ⊂

⋃k
`=0D`(M).

The reverse inclusion holds trivially for k = 0. For k = 2 note that any domain in
D0(M) or D1(M) may loose all it symmetries by an arbitrarily small perturbation,
and thus belongs to D2(M). �

The exclusion of k = 1 in the above lemma is necessary, because there are domains
D ∈ D0(R2), such as a generic parallelogram, which have no bilateral symmetry and
hence cannot be a limit of domains in D1(R2). The arguments in the last lemma
also yield the next observation. For k = 0, 1 here, continuity is with respect to the
Hausdorff distance between compact subsets of M .

Lemma 3.5. The mapping D 7→ Fix(D) is continuous on Dk(M).

Proof. If k = 2, then Fix(D) = D and there is nothing to prove. So assume k ≤ 1.
Let Di ∈ Dk(M) be a sequence of domains which converges to D ∈ Dk(M). Choose
pi ∈ Fix(Di). Then pi converge to a point p ∈ D, after passing to a subsequence.
Let ρi ∈ Sym(Di). Then ρi(pi) = pi. As discussed in the proof of Lemma 3.4, ρi
converge to ρ ∈ Sym(D). A computation similar to (2) shows that ρ(p) = p. If
k = 0, pi = Fix(Di) and we may assume that ρi are rotations by an angle which is
uniformly bounded away from 0 and 2π. Then ρ will be a nontrivial rotation. Hence
p = Fix(D) as desired. Next suppose that k = 1. Then we may assume that ρi are
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reflections, which yields that so is ρ. Consequently, p ∈ Fix(D). So Fix(Di) converge
to a subset S of Fix(D). Since Fix(Di) are connected, so is S. Furthermore, if we
choose pi ∈ ∂D, then p ∈ ∂D. So S contains the end points of Fix(D). Hence
S = Fix(D), which completes the proof. �

If a center c on A ⊂ D(M) is G-equivariant, then c(D) ∈ Fix(D) for all D ∈ A.
Thus the last lemma establishes a necessary requirement for the existence of G-
equivariant centers, which we proceed to construct as follows. Let

Ek(M) :=
{

(D, p) | D ∈ Dk(M) , p ∈ relint
(

Fix(D)
)}
,

where relint stands for relative interior. Next let [D] := {ρ(D) | ρ ∈ G} be the
G-orbit of D ∈ Dk(M), and [Dk(M)] := Dk(M)/G be the corresponding orbit
space. Also let [(D, p)] := {(ρ(D), ρ(p)) | ρ ∈ G} be the G-orbit of (D, p) ∈ Ek(M),
and set [Ek(M)] := Ek(M)/G. The bundle map π : Ek(M) → Dk(M), given by
π((D, p)) := D, descends to π̃ : [Ek(M)] → [Dk(M)] given by π̃([(D, p)]) := [D]. So
π̃−1([D]) is homeomorphic to relint(Bk). We also have the natural orbit projections
(D, p) 7→ [(D, p)] and D 7→ [D], which form the following commuting diagram:

Ek(M)
π //

��

Dk(M)

��
[Ek(M)]

π̃ // [Dk(M)]

By [6, Lem. 3.1] the action of G on Dk(M) is proper in the sense of Palais. Further-
more, since by assumption G is closed, it is a Lie group by Cartan’s closed subgroup
theorem [24, Thm. 20.10]. Hence the slice result of Palais [31, Prop. 2.3.1] for orbits
of proper actions applies to [Dk(M)], which leads to the next observation.

Lemma 3.6. The bundle map π̃ : [Ek(M)]→ [Dk(M)] is locally trivial.

Proof. If k = 0, then π̃ is injective, and by Lemma 3.5 is a homeomorphism. Next
assume that k = 1. Let D0 ∈ D(M), and Γ be the complete geodesic containing
Fix(D0). By Lemma 3.5, we may choose a neighborhood U of D0 in Dk(M) so small
that Fix(D) lies in a tubular neighborhood of Γ for all D ∈ U . Then Fix(D) may be
projected into a segment Fix(D) ⊂ Γ, and canonically mapped to Fix(D0), i.e., by a
translation in Γ so that the midpoint of Fix(D) coincides with that of Fix(D0), and
then a dilation. Finally suppose that k = 2. As we showed at the end of Section 2,
by Lemma 2.4, there exists a neighborhood U of D0 in Dk(M) such that for every
D ∈ U there exists a homeomorphism fD : B2 → D depending continuously on D.
Let [U ] ⊂ [Dk(M)] be the corresponding neighborhood of [D0], i.e., the collection of
[D] for all D ∈ U . By [31, Prop. 2.3.1] there exists a local slice of [Dk(M)] through
D0, i.e., a continuous map σ : [U ] → U such that σ([D]) ∈ [D], and σ([D0]) = D0.
Then the mapping

π̃−1([U ]) 3 [(D, p)] 7−→
(

[D], f−1σ([D])

(
σ([p])

))
∈ [U ]× int(B2),
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is the desired trivialization, where σ([p]) denotes the element of [p] in σ([D]), i.e.,
σ([p]) := ρ(p) where ρ ∈ G is the isometry with ρ(D) = σ(D) (ρ is unique because
G acts freely on D2(M)). �

As noted in [6, Rem. 4.14], the C1-regularity assumption in [6] was needed only to
prove the above lemma. Now that we have established this fact, via Carathéodory’s
theorem, the arguments in [6] complete the proof of Theorem 1.1; however, we include
a shorter and self-contained argument below. Let [D(M)] := D(M)/G.

Lemma 3.7. [D(M)], [Dk(M)] and [Ek(M)] are metrizable.

Proof. A locally trivial fiber bundle with a metrizable base and fiber is metrizable
[10]. So, by Lemma 3.6, [Ek(M)] is metrizable if [Dk(M)] is metrizable. Since
[Dk(M)] ⊂ [D(M)], it suffices to check that [D(M)] is metrizable. By a result of
Palais [31, Thm. 4.3.4], [D(M)] is metrizable, provided that D(M) is metrizable and
separable. By Lemma 2.3, D(M) is metrizable. To see that D(M) is separable, note
that it may be identified with Emb0(B2,M)/Homeo(B2). So it suffices to check
that Emb0(B2,M) is separable, because continuous image of a separable space is
separable [45, Thm. 16.4a]. But Emb0(B2,M) is a subspace of C0(B2,M), which is
second countable [9, Thm. XII.5.2]. Hence Emb0(B2,M) is second countable, and
therefore separable [29, Thm. 30.2]. �

Using the last three observations, we can now establish the main step in the proof
of Proposition 3.2:

Lemma 3.8. Any G-equivariant center on a closed G-invariant subset of Dk(M)
may be extended to a G-equivariant center on Dk(M).

Proof. Let A be a closed G-invariant subset of Dk(M), and c be a G-equivariant
center on A. Define C : A → Ek(M), by C(D) := (D, c(D)). Then C descends to
the map C̃ : A/G→ [Ek(M)] given by C̃([D]) = [C(D)]. Since A is G-invariant and
closed, A/G is closed. So, by Lemmas 2.2 and 3.6, C̃ can be extended to [Dk(M)].
Now for D ∈ Dk(M) we define c̃(D) as the point in Fix(D) such that

[(D, c̃(D))] = C̃([D]).

Note that c̃(D) is indeed unique, because if [(D,x)] = [(D, c̃(D))], then x = ρ(c̃(D))
for some ρ ∈ Sym(D). But ρ(c̃(D)) = c̃(D) since c̃(D) ∈ Fix(D). So x = c̃(D).
Next, to see that c̃ is G-equivariant, note that

[(ρ(D), c̃(ρ(D))] = C̃([ρ(D)]) = C̃([D]) = [(D, c̃(D))] = [(ρ(D), ρ(c̃(D)))].

So ρ(c̃(D)) = ρ′(c̃(ρ(D))) for some ρ′ ∈ Sym(ρ(D)). But c̃(ρ(D)) ∈ Fix(ρ(D)). So
ρ′(c̃(ρ(D))) = c̃(ρ(D)), and we conclude that ρ(c̃(D))) = c̃(ρ(D)). Next we check
that c̃ = c on A. If D ∈ A, then [(D, c̃(D))] = C̃([D]) = [C(D)] = [(D, c(D))].
So c̃(D) = ρ(c(D)) for some ρ ∈ Sym(D). Since c is equivariant, ρ(c(D)) =
c(ρ(D)) = c(D). So c̃(D) = c(D) for D ∈ A. Finally we check that c̃ is continuous.
Let Di ∈ Dk(M) converge to D. By Lemma 3.5, c̃(Di) converges to some point
x ∈ Fix(D), after passing to a subsequence. So [(Di, c̃(Di))] converges to [(D,x)].



8 IGOR BELEGRADEK AND MOHAMMAD GHOMI

But [(Di, c̃(Di))] = C̃([Di]) which converges to C̃([D]) = [(D, c̃(D))]. By Lemma
3.7, [Ek(M)] is Hausdorff. So [(Di, c̃(Di))] must have a unique limit, which yields
[(D,x)] = [(D, c̃(D))] = C̃([D]). Thus x = c̃(D) by the uniqueness of c̃(D). �

The last fact we need will ensure that the extensions given by the last lemma may
join each other continuously across D(M). We establish this fact via the equivariant
version of Tietze’s extension theorem which was first proved by Gleason [16] and
later generalized by Feragen [12].

Lemma 3.9. Let A ⊂ Dk(M) be a closed G-invariant set, and c be a G-equivariant
center on A. Then c may be extended to a G-equivariant center on a G-invariant
closed set which contains an open neighborhood of A.

Proof. Each model plane M admits a standard embedding M → R3 that is equi-
variant with respect to a representation Iso(M) → GL(3). If M = S2, we have the
inclusion map S2 → R3, and the identification of Iso(S2) with O(3) ≤ GL(3). If
M = R2, we identify R2 with the plane R2 × {1} ⊂ R3 and note that Iso(R2) is a
subgroup of affine transformations of R2, which may be represented as a subgroup
of GL(3) via homogeneous coordinates. If M = H2, we consider the hyperboloid
model of H2 in R3, so that Iso(H2) lies in the Lorentz group O(1, 2) ≤ GL(3).

Thus c may be viewed as a G-equivariant map c : A → R3. Now by Feragen’s
theorem [12, Thm. 3.1] c may be extended to a G-equivariant map c : Dk(M)→ R3,
because Dk(M) ⊂ D(M) and [Dk(M)] ⊂ [D(M)] are metrizable by Lemmas 2.3 and
3.7 respectively. Let U be the open ε-neighborhood of A in D(M) with respect to
the metric d given by (1), and U be the closure of U . Since d is G-invariant, U is
G-invariant. Furthermore, we may choose ε so small that c(U) lies in a G-equivariant
tubular neighborhood T of M in R3. Then the G-equivariant projection π : T →M
composed with c yields a G-invariant map c : U → M . If ε is sufficiently small, we
can make sure that c(D) ∈ int(D) for all D ∈ U , as desired.

We note that T and π may be constructed as follows. Fix r ∈ (0, 1) and let
p := (x, y, z) ∈ R3. If M = S2 or R2 × {1}, let T be the open r-neighborhood of
M in R3, with π(p) := p/|p|, and π(p) := (x/z, y/z, 1) respectively. If M is the
hyperboloid model of H2, given by Q(p) := z2 − x2 − y2 = 1 and z > 0, let T be
given by 1− r < Q(p) < 1 + r and z > 0, with π(p) := p/

√
Q(p). �

Applying the last two lemmas alternately, we now establish the main result of this
section, which concludes the proof of Theorem 1.1:

Proof of Proposition 3.2. Let A ⊂ D(M) be a G-invariant closed set, and c be a
G-equivariant center on A. By Lemma 3.4, D0(M) = D0(M). So D0(M) is closed,
which implies that A ∩ D0(M) is closed. Thus, by Lemma 3.8, we may extend c to
D0(M). Next, by Lemma 3.9, we may extend c to a G-invariant closed set which
contains an open neighborhood of D0(M) in D1(M). Then we may extend c to
D1(M) by Lemma 3.8. Thus c is now defined on D0(M) ∪ D1(M), which includes
D1(M) by Lemma 3.4. Again using Lemma 3.9 we may extend c to a G-invariant
closed subset of D2(M) which includes an open neighborhood of D1(M). Then we
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extend c to all of D2(M) by Lemma 3.8. But D2(M) = D(M) by Lemma 3.4, which
completes the proof. �

We also obtain a version of Theorem 1.1 for conformal transformations:

Theorem 3.10. Let G = Con(R2) and A ⊂ D(R2) be a closed G-invariant set.
Then any G-equivariant center on A may be extended to a G-equivariant center on
D(R2).

Proof. By Theorem 1.1, c may be extended to an O(2)-equivariant center on D(R2).
For each D ∈ D(R2), let R(D) be the radius and x0(D) be the center of the circum-
scribing circle of D. Define ρD ∈ G by ρD(x) := (x− x0(D))/R(D), so that ρD(D)
is inscribed in S1. Then

c(D) := ρ−1D ◦ c ◦ ρD(D)

is a center on D(R2), which coincides with c on A. We claim that g(c(D)) = c(g(D)),
for all g ∈ G and D ∈ D(R2), which will complete the proof. First assume that g is
a translation or a dilation, i.e., g(x) = rx+ b for some r > 0 and b ∈ R2. Then one
may quickly check that ρg(D) ◦ g = ρD, which implies ρ−1g(D) = g ◦ ρ−1D . Hence

c(g(D)) = ρ−1g(D) ◦ c ◦ ρg(D)(g(D)) = g ◦ ρ−1D ◦ c ◦ ρD(D) = g(c(D)),

as desired. Next suppose that g ∈ O(2). Again a simple computation shows that
ρg(D) ◦ g = g ◦ ρD, which implies ρ−1g(D) ◦ g = g ◦ ρ−1D . So, since c is O(2)-equivariant,

c(g(D)) = ρ−1g(D) ◦ c ◦ g ◦ ρD(D) = ρ−1g(D) ◦ g ◦ c ◦ ρD(D) = g(c(D)).

This completes the proof since every element of G is composed of a translation, a
dilation, and a rotation. �

Note 3.11. Theorem 3.10 holds trivially for H2, since Con(H2) = Iso(H2); however,
it does not hold for S2. Indeed Con(S2) is generated by inversions through circles. In
particular, if D ∈ D(S2) is a hemisphere, Sym(D) is generated by inversions through
circles centered on ∂D, which act transitively on D. Hence Fix(D) = ∅.

4. Applications

Here we develop some applications of Theorem 1.1 and its conformal analogue,
Theorem 3.10, which illustrate the utility of centers when used in conjunction with
Carathéodory’s theorem. A Jordan domain D ∈ D(M) is round if there is a point in
D which has constant distance from all points of ∂D. Let RD(M) ⊂ D(M) denote
the space of round Jordan domains in M .

Proposition 4.1. D(R2) admits a strong deformation retraction onto RD(R2)
which is equivariant under Con(R2). Furthermore, D(R2) is equivariantly con-
tractible with respect to O(2) ⊂ Iso(R2).

Proof. Let G = Con(R2). By Theorem 3.10 there exists a G-equivariant center c on
D(R2). For every D ∈ D(R2) let fD := fD,c(D),(1,0) be as in Lemma 2.4. If g ∈ G,
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then g(fD(o)) = g(c(D)) = c(g(D)) = fg(D)(o) by equivariance of c. So f−1g(D) ◦g ◦fD
is a conformal transformation of B2 that fixes o, and hence lies in O(2). Thus

(3) g(fD(tB2)) = fg(D)(tB
2)

for all t ∈ [0, 1]. In particular note that if g is a translation, f−1g(D) ◦ g ◦ fD is the
identity because it preserves the direction of (1, 0) by definition of fD. For t ∈ (0, 1]
and D ∈ D(R2), define ht,D : B2 → R2 by

ht,D(x) := fD(o) +
fD(tx)− fD(o)

t
,

and set h0(x) := lim
t→0

ht,D(x) = fD(o) + (dfD)o(x). Then Dt := ht,D(B2) is a

homotopy between D1 = D and D0 = (dfD)o(B
2). If D is a round domain with

radius rD, then fD(x) = rDx+ c(D); so ht,D = fD which shows Dt = D, or Dt fixes
elements of RD(R2) as desired.

Now we check that g(Dt) = (g(D))t for all g ∈ G, i.e., Dt is G-equivariant. By
continuity it is enough to consider t ∈ (0, 1]. If g is linear, then by (3),

g(Dt) = g(fD(o)) +
g(fD(tB2))− g(fD(o))

t

= fg(D)(o) +
fg(D)(tB

2)− fg(D)(o)

t
= (g(D))t.

Recall that if g is a translation by b, then fg(D) = g ◦ fD = b+ fD. Hence

(g(D))t = fg(D)(o) +
fg(D)(tB

2)− fg(D)(o)

t

= b+ fD(o) +
b+ fD(tB2)− b− fD(o)

t
= b+Dt = g(Dt).

We conclude that g(Dt) = (g(D))t for all g ∈ G, since G is generated by translations
and linear conformal maps.

Finally note that D0 = (dfD)o(B
2) is convex, because (dfD)o is linear. Let BD ∈

RD(R2) be the round domain centered at c(D) and with the same area as D. Then
the mapping λ 7→ (1 − λ)D0 + λBD, where λ ∈ [0, 1] and + is the Minkowski
sum, is a G-equivariant homotopy of D0 to BD. Concatenating this homotopy with
Dt gives a G-equivariant strong deformation retraction of D(R2) onto RD(R2) as
desired. Furthermore, (λ,BD) 7→ (1−λ)BD+λB2 is anO(2)-equivariant deformation
retraction of RD(R2) to B2. Hence D(R2) is O(2)-equivariantly contractible. �

The last observation implies that the space of Jordan curves in R2, i.e., continuous
injective maps S1 → R2 modulo homeomorphisms of S1, is equivariantly contractible
to circles, with respect to Con(R2). For rectifiable curves, this contraction can
also be performed via curve shortening flow and rescaling [23]. Using the above
proposition we now prove:

Theorem 4.2. Let M be a complete connected surface of constant curvature, and
G = Iso(M). Then D(M) admits a G-equivariant strong deformation retraction
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onto RD(M). In particular if M = S2, then D(M) admits a G-equivariant strong
deformation retraction onto the space of hemispheres. Furthermore if M = R2 or
H2, then D(M) is equivariantly contractible with respect to O(2) ⊂ Iso(M).

Proof. After replacing M by its universal Riemannian cover, and G by isometries
of the covering space, we may assume that M is a model plane. The case of R2 is
already covered by Proposition 4.1, since Iso(M) ⊂ Con(M). We reduce the cases
of S2 and H2 to that of R2 via the exponential map, as follows.

By Theorem 1.1 there exists a G-equivariant center c on D(M). For D ∈ D(M)
let fD := fD,c(D),u0 be as in Lemma 2.4, where u0 ∈ Tc(D)M is any unit vector. Note
that, for t ∈ [0, 1], fD(tB2) does not depend on u0. Indeed if u′0 ∈ Tc(D)M is another
unit vector, and f ′D := fD,c(D),u′0

, then f ′D = fD ◦ρ for some ρ ∈ O(2), since f−1D ◦f ′D
is a conformal transformation of B2 which fixes o. Let RD ∈ RD(M) be the largest
round domain centered at c(D) which is contained in D, and T be the infimum of
t ∈ [0, 1] such that fD(tB2) intersects ∂RD. Then [T, 1] 3 t 7→ Dt := fD(tB2)
deforms D = D1 to a domain DT in RD which intersects ∂RD.

Using the exponential map expc(D) : Tc(D)M → M we identify DT with a do-
main D := exp−1c(D)(DT ) in Tc(D)M ' R2, and RD with the round domain R :=

exp−1c(D)(RD) centered at the origin o ' c(D) of R2. By Proposition 4.1, there exists
a strong G-equivariant deformation retraction of D(R2) onto RD(R2). Restricting
this retraction toD yields a deformationDt ∈ D(R2), t ∈ [0, 1], withD0 = D andD1

a round domain centered at o. Let λ(t) ∈ R+ be the dilation factor such that λ(t)Dt

lies inside R and intersects ∂R. Then λ(t)Dt is a deformation of D to R through
domains which are inside R and intersect ∂R. So expc(D)(Dt) is a deformation of
DT to RD through domains which lie in RD and intersect ∂RD. Concatenating
this deformation with the earlier deformation of D to DT yields a deformation of D
to RD which depends continuously on D, and keeps D fixed whenever D is round.
Hence we obtain a strong deformation retraction D(M)→ RD(M).

To see that the retraction we have constructed is G-equivariant, note that Rρ(D) =
ρ(RD) for all ρ ∈ G, which yields that (ρ(D))t = ρ(Dt). In particular (ρ(D))T =

ρ(DT ), which yields that ρ(D) ⊂ Tρ(c(D))M and D ⊂ Tc(D)M are isometric, since
dρc(D)(D) = ρ(D). It follows that the deformations (ρ(D))t and Dt also correspond
via the isometry dρc(Dt) : Tc(Dt)M ' R2 → Tρ(c(Dt))M ' R2, since (ρ(D))t and Dt

are constructed using the retraction given by Proposition 4.1, which is equivariant
under Iso(R2). Thus we obtain a deformation of ρ(D) to Rρ(D) which corresponds
via ρ to the deformation of D to RD at each instant.

IfM = H2, concatenating the homotopy which deformsD to RD with translations
along geodesic segments which connect c(D) to a fixed point o ∈ M , followed by a
dilation, yields a contraction of D(M) to the round domain D0 of radius 1 centered
at o. This yields a contraction of D(H2) to D0 which is equivariant under O(2) ⊂
Iso(H2). If M = S2, we may dilate each domain RD with respect to c(D) until
radius of RD reaches π/2, which constitutes the desired retraction of D(S2) onto
hemispheres, and competes the proof. �
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5. Canonical Centers

The centers that we constructed in Section 3 involved arbitrary choices for the
extensions of prescribed values across each stratum of D(M). Here we describe a
procedure for constructing centers on smooth Jordan domains in R2, which corre-
spond in a canonical way to the center of mass, Steiner point, or circumcenter (the
center of the circumscribing circle) of convex domains. In this section we assume
that G = Con(R2).

Lemma 5.1. For any D ∈ D(R2), there exists a strong deformation retraction
rD : R2 × [0, 1]→ R2 of R2 onto D such that the mapping

D(R2) 3 D
r7−→ rD ∈ C0

(
R2 × [0, 1],R2

)
is continuous and G-equivariant, i.e., ρ(rD(x, t)) = rρ(D)(ρ(x), t) for all ρ ∈ G and
D ∈ D(R2).

Proof. As in the proof of Theorem 3.10, for D ∈ D(R2), let x0(D) be the circum-
center of D, R(D) be the radius of the circumscribing circle, and set ρD(x) :=
(x − x0(D))/R(D). Then the mapping D 7→ ρD(D) is a retraction from D(R2)
onto the space D0(R

2) of domains with x0(D) = o and R(D) = 1. By a discussion
similar to the proof of Theorem 3.10, it is enough to construct the retractions rD
that we seek for D ∈ D0(R

2), and show only that they are O(2)-equivariant. Then
rD(x, t) := ρ−1D ◦ rρ(D)

(
ρD(x), t

)
yields the desired retraction for all D ∈ D(R2).

So assume that D ∈ D0(R
2). Let D∗ be the closure of R2 \ D, p0 := (0, 0, 1),

st : S2 \ {p0} → R2 be the stereographic projection, and D̃∗ ⊂ S2 be the closure of
st−1(D∗). Furthermore, fix u0 ∈ Tp0S2 \ {0}, and let f

D̃∗
:= f

D̃∗,p0,u0
: B2 → D̃∗ be

as in Lemma 2.4. Then we obtain a conformal map gD : B2 \ {o} → D∗ given by
gD := st ◦ f

D̃∗
. Next let ht : B2 \ {o} → B2, given by ht(x) := (1 − t)x + tx/|x| be

the strong deformation retraction of B2 \ {o} onto S1, and set

rD(x, t) := gD ◦ ht ◦ g−1D (x).

By Lemma 2.4, D 7→ rD is continuous. It remains to check that rD is equivariant
with respect to ρ ∈ O(2). So we compute that

ρ(rD(x, t)) = ρ ◦ gD ◦ ht ◦ g−1D (x)

= gρ(D) ◦
(
g−1ρ(D) ◦ ρ ◦ gD

)
◦ ht ◦

(
g−1ρ(D) ◦ ρ ◦ gD

)−1 ◦ g−1ρ(D) ◦ ρ(x)

= gρ(D) ◦ ht ◦ g−1ρ(D) ◦ ρ(x) = rρ(D)(ρ(x), t).

The third equality above holds because g−1ρ(D) ◦ ρ ◦ gD is a conformal transformation
of B2 \ {o}, so it is a rotation about o, which commutes with ht. �

An analogue of the above result for curves had been established earlier by Pixley
[34]; see also [38]. Now any continuous map f : D(R2)→ R2 generates a continuous
point selection on D(R2) given by rD(f(D), 1), which is G-equivariant whenever f
is G-equivariant. To obtain a center we need to push this point into the interior of
D in a continuous way. We show how to do this on the space of C2 Jordan domains
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DC2(R2), i.e., images of C2 embeddings B2 → R2 equipped with C2-topology. So
a pair of domains in DC2(R2) are close provided that they admit parametrizations
that are C2-close. For each D ∈ DC2(R2) let reach(D) denote its reach in the sense
of Federer [11, 44], i.e., the supremum of numbers r such that through every point
of ∂D there passes a circle of radius r which is contained in D. Reach may also
be defined as the distance between ∂D and the medial axis of D, i.e., the set of
singularities of the distance function from the boundary d∂D : D → R, see [15, Sec.
3]. Since ∂D is C2, it follows that d∂D is C2 within the open neighborhood of ∂D
of radius reach(D) [13], and hence reach(D) > 0. Furthermore, Chazal and Soufflet
[7, Thm. 3.2] showed that the medial axis of D varies continuously, with respect to
Hausdorff distance, under C2 perturbations of ∂D. So we may record that:

Lemma 5.2. For any domain D ∈ DC2(R2), reach(D) > 0. Furthermore, the
mapping D 7→ reach(D) is continuous on DC2(R2).

Let D
1
2 ⊂ D be the domain obtained by moving ∂D along its inward normals by

the distance reach(D)/2. So D
1
2 is characterized by

(4) D = D
1
2 +

reach(D)

2
B2,

where + is the Minkowski sum. Alternatively, D
1
2 may be defined as the set {d∂D ≥

reach(D)/2}. Note that d∂D is a convex function if D is convex [41, Lem. 3.3, p.
211]. Thus D

1
2 is convex whenever D is convex. Since d∂D is C2 within the distance

reach(D) of ∂D, we have D
1
2 ∈ DC2(R2). By Lemma 5.2, D 7→ D

1
2 is continuous,

and D
1
2 ⊂ int(D). Furthermore, since conformal transformations are affine, and

affine transformations preserve Minkowski addition, (4) shows that D 7→ D
1
2 is G-

equivariant. Thus any continuous map f : DC2(R2) → R2 generates a center on
DC2(R2) given by

(5) cf (D) := r
D

1
2

(
f(D), 1

)
,

where r is as in Lemma 5.1. Note that cf is G-equivariant whenever f is G-
equivariant, and cf (D) = f(D) whenever f(D) ∈ D

1
2 . The next lemma gives

examples of f with this property. For D ∈ DC2(R2), the Steiner point of D is
the center of mass of ∂D with respect to the density function given by its curvature.

Lemma 5.3. If f : DC2(R2) → R2 is the Steiner point, circumcenter, or center of
mass, then f(D) ∈ D

1
2 whenever D is convex.

Proof. First assume that f is the Steiner point. Then f is additive with respect to
Minkowski sum for convex domains [42,43]. Hence when D is convex,

f(D) = f
(
D

1
2 +

R

2
B2
)

= f(D
1
2 ) +

R

2
f(B2) = f(D

1
2 ) ∈ D

1
2 ,

where R := reach(D). Next suppose that f is the circumcenter. Note that the
circumscribing circle of D is concentric to that of D

1
2 . So again we have f(D) =
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f(D
1
2 ), which yields f(D) ∈ D

1
2 when D is convex. Finally let f be the center of

mass. Set A := D \D
1
2 . Then

f(D) =
|D

1
2 |
|D|

f(D
1
2 ) +

|A|
|D|

f(A),

where | · | denotes area. Thus it suffices to show that f(A) ∈ D
1
2 , because D

1
2 is

convex. Let γ : [0, L] → R2 be an arc-length parametrization for ∂D
1
2 , N(t) be the

inward unit normal vector along γ, and set x(t, s) := γ(t)− sN(t). Then

f(A) =
1

|A|

∫ R
2

0

∫ L

0
x(t, s)

∣∣∣∣∂x∂t × ∂x

∂s

∣∣∣∣ dt ds.
Set T (t) := γ′(t). Then N ′(t) = −κ(t)T (t), where κ := |T ′| is the curvature of γ.
A simple computation shows that

∣∣∂x
∂t ×

∂x
∂s

∣∣ = 1 + sκ(t). Next note that T ′ = κN

and
∫ L
0 T ′(t) dt = T (L) − T (0) = 0. Furthermore, if γ parametrizes ∂D in the

counterclockwise direction, then N(t) = iT (t), where i indicates counterclockwise
rotation by π/2. So

∫ L
0 N(t) dt = i

∫ L
0 T (t) dt = i(γ(L)− γ(0)) = 0. Now we have∫ R

2

0

∫ L

0
x(t, s)

∣∣∣∣∂x∂t × ∂x

∂s

∣∣∣∣ dt ds
=

∫ R
2

0

∫ L

0

(
γ(t) + sγ(t)κ(t)− sN(t)− s2T ′(t)

)
dt ds

=

∫ R
2

0

∫ L

0
γ(t)

(
1 + sκ(t)

)
dt ds.

So we may write

f(A) =

∫ L

0
γ(t)δ(t)dt, where δ(t) :=

1

|A|

∫ R
2

0

(
1 + sκ(t)

)
ds.

But
∫ L
0 δ(t)dt = |A|/|A| = 1. Hence f(A) is the center of mass of ∂D

1
2 with respect

to the density function δ, which yields that f(A) ∈ D
1
2 by [14, Lem. 2.3]. �

Now we may conclude that:

Theorem 5.4. Any continuous G-equivariant map f : DC2(R2) → R2 generates a
G-equivariant center cf on DC2(R2) given by (5). Furthermore, if f is the Steiner
point, center of mass, or circumcenter, then cf (D) = f(D) whenever D is convex.

The obvious question which remains is how to extend the last result to construct
centers for D(R2), and more generally for D(M), which correspond to classical
notions of center in a canonical way.

Note 5.5. Let DCω(R2) ⊂ DC2(R2) denote the space of planar Jordan domains with
analytic boundary. Another approach to construct a center on DCω(R2) is as follows.
The medial axis of a domain D ∈ DCω(R2) forms a piecewise analytic tree T (D) [8].
In particular T (D) is rectifiable, and we may define c(D) as the center of T (D) [5],
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i.e., the point in T (D) whose maximum distance from leaves of T (D), measured in
T (D), is as small as possible. By Lemma 5.2, c(D) ∈ int(D). Furthermore, the
continuity of c(D) should follow from [8, Thm. 7.2] or [7, Thm. 3.2]. See [3] for a
survey of literature on medial axis and its stability. For an introduction to medial
axis on manifolds and more references see [15, Sec. 3].
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