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There are problems to whose solution I would attach an infinitely greater impor-
tance than to those of mathematics, for example touching ethics, or our relation to
God, or concerning our destiny and our future; but their solution lies wholly beyond
us and completely outside the province of science.

–Karl Friedrich Gauss (1777-1855), Quoted in J.R. Newman, The World of Mathematics

It is difficult and often impossible to judge the value of a problem correctly in
advance; for the final award depends upon the gain which science obtains from the
problem. Nevertheless we can ask whether there are general criteria which mark a
good mathematical problem. An old French mathematician said: “A mathematical
theory is not to be considered complete until you have made it so clear that you can
explain it to the first man whom you meet on the street.“This clearness and ease
of comprehension, here insisted on for a mathematical theory, I should still more
demand for a mathematical problem if it is to be perfect; for what is clear and easily
comprehended attracts, the complicated repels us.

–David Hilbert, Address to the International Congress of Mathematicians, 1900

Our Euclidean intuition, probably, inherited from ancient primates, might have
grown out of the first seeds of space in the motor control systems of early animals who
were brought up to sea and then to land by the Cambrian explosion half a billion
years ago. Primates brain had been lingering for 30-40 million years. Suddenly,
in a flash of one million years, it exploded into growth under relentless pressure
of the sexual-social competition and sprouted a massive neocortex (70% neurons
in humans) with an inexplicable capability for language, sequential reasoning and
generation of mathematical ideas. Then Man came and laid down the space on
papyrus in a string of axioms, lemmas and theorems around 300 B.C. in Alexandria.

–Misha Gromov, Spaces and Questions, 1999

I only get frightened—and it happens very rarely—when I think I have an idea.
–J. Robert Oppenheimer, Interview with R. Murrow, 1955

The life so short, the craft so long to learn.
–Chaucer, Parlement of Foules, 1382

About the cover: Detail from The School of Athens by Raphael, 1511
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Abstract. We collect dozens of well-known and not so well-known fundamental
unsolved problems involving low dimensional submanifolds of Euclidean space.
The list includes selections from differential geometry, Riemannian geometry,
metric geometry, discrete or polyhedral geometry, geometric knot theory, the-
ory of convex bodies, and integral geometry. The common thread through these
selections are the simplicity and intuitive nature of the questions. Extensive bib-
liography and historical background are included for each set of problems.
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0. Introduction

Here we discuss a number of unsolved problems in geometry of curves and surfaces
which have been of interest to the author over the years. Needless to say, this
selection reflects the author’s personal taste and (limited) perspective, although an
effort has been made to include some of the oldest and best known problems in the
field. Virtually all of these questions are concerned with objects in the Euclidean
plane or 3-dimensional space, although in some cases higher dimensional analogues
are discussed as well, while in other cases the problems are essentially intrinsic or
independent of the ambient space.

0.1. Why study curves and surfaces? Curves and surfaces are to geometry what
numbers are to algebra. They form the basic ingredients of our visual perception
and inspire the development of far reaching mathematical tools. Yet despite cen-
turies of pure study, not to mention a wealth of growing applications in science and
technology, there are still numerous open problems in this area which are strikingly
intuitive and elementary to state, pointing to fundamental gaps in our conceptions
of space and shape. According to Ezra Pound, “music begins to atrophy when it
departs too far from the dance” and “poetry begins to atrophy when it gets too far
from music”. Perhaps the same can be said of geometry, and indeed all of mathe-
matics, if it looses sight of its natural building blocks and connections to the physical
world.
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0.2. Other sources for problems. There are many lists of problems in geometry
and closely related fields. For a wide range of questions in differential, Riemannian
and metric geometry see Yau [166, 190], Donaldson [48], and Gromov [82, 83, 84].
Some classical problems in differential geometry and many references may be found
in books by Berger [21], and Burago and Zalgaller [191]. For problems involving
geodesics see Burns and Matveev [28]. A large collection of problems in discrete
and convex geometry are contained in the book of Croft, Falconer, and Guy [42];
also see Gardner [58] for problems involving convex bodies. For problems in minimal
surface theory see the lists by Meeks [125, 126, 129], and for surfaces of constant
mean curvature see Lopez [117]. A vast collection of problems in low dimensional
topology is maintained by Kirby [107]. For some problems in geometric knot theory
see Adams [4].

0.3. Useful websites. There are a number of websites for tracking geometric prob-
lems. The Open Problems Project [45], maintained by Demaine, Mitchell, O’Rourke,
contains a wealth of problems in discrete and computational geometry. There are
also growing lists of geometric problems on Wikipedia’s Unsolved Problems [1] page.
Some open problem in low dimensional topology are maintained at the Low Dimen-
sional Topology [3] page. Finally numerous problems in all aspects of geometry are
continually discussed on MathOverflow [2].

0.4. The earlier draft of this article. This article is a major expansion and
revision of an earlier list of problems [64] which the author had collected in the Fall
of 2004 for his students in a class on differential geometry in the MASS program
at Penn State University. Since then several of the problems in that list have been
solved: John Pardon [146] solved Gromov’s question on the distortions of knots [64,
Prob. 5]; Wegner [186] found examples of bicycle curves with rotation number, or
relative density, different from 1/2 [64, Prob. 1], Wilmore’s conjecture [64, Prob.
18] was solved by Coda and Neves [122], and the converse to the four vertex theorem
for simple closed curves [64, Prob. 18] was proved by Dahlberg [43, 47].

1. Isometric Embeddings

A fundamental theme in surface theory, which dates back to the development of
this subject by Gauss [59], is determining the extent to which the intrinsic geometry
or metric structure of a surface contributes to its global shape in the ambient space.
Questions of this type, which we discuss below may be phrased within the context of
the uniqueness and existence of isometric embeddings of 2-dimensional Riemannian
manifolds in Euclidean 3-space R3.

1.1. Flexibility of closed surfaces. As every child soon learns, an egg shell is
not flexible. The mathematical reason is the rigidity theorem for convex surfaces
first proved by Cauchy for polyhedra, then extended to smooth surfaces by Hilbert,
Cohn-Vossen, Weyl, Nirenberg, and finally generalized to all convex surfaces by
Alexandrov and Pogorelov [94, 9]. This theorem states that isometric (closed) con-
vex surfaces are congruent, or, to put it more succinctly, convex surfaces are (iso-
metrically) rigid. Finding an analogue of this result for general (nonconvex) surfaces

http://cs.smith.edu/~orourke/TOPP/
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics
https://ldtopology.wordpress.com/open-problems/
https://ldtopology.wordpress.com/open-problems/
http://mathoverflow.net
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is one of the oldest problems in geometry [190], [188, Problem 50], which may be
traced back to Euler [54, p. 494–496] for polyhedral surfaces, see [76, 78, 115], and
Maxwell [124] for smooth surfaces; however, to quote Chern [32, p. 211], “practically
nothing is known” about it.

To state the problem explicitly, let us say that a surface is (isometrically) flexible,
within a given smoothness class, if it admits a continuous deformation which pre-
serves its smoothness and does not change its intrinsic metric. For instance, a sheet
of paper is flexible in the class of C∞ surfaces, since it can be rolled into a cylinder.
It is also well-known, though not all obvious, that a spherical cap (a piece of sphere
cut off by a plane) is smoothly flexible. No one, however, has ever found a flexible
closed surface in the smoothness class C2, or even C1,1, where by closed we mean
compact without boundary. Hence the following question:

Problem 1.1 (Euler [54], 1776; and Maxwell [124], 1819). Does there exist a closed
C2 surface in Euclidean space R3 which is flexible?

Note that flexibility is a stronger notion than nonrigidity. Indeed it is easy to
construct C∞ surfaces which are not rigid: consider for instance a closed surface
with a dimple which is surrounded by a flat rim, and replace the dimple by its
reflection. Such a transformation, however, cannot be carried out continuously for
it would force the mean curvature vector to switch sides. One can even construct
closed analytic surfaces which are not rigid [151], though these constructions are far
more subtle.

Secondly, it is important to note that the answer to the analogue of Problem
1.1 in the category of polyhedral surfaces is yes! The first example of a flexible
closed polyhedral surface was constructed by Robert Connelly [39]; however, these
flexible polyhedra are not so natural. Indeed Gluck [76] had shown that almost all
closed polyhedral surfaces are rigid, see the book of Igor Pak [145]. Further, Stoker
[178] explicitly described a large class of nonconvex polyhedral surfaces which are
rigid, which were further studied and generalized by Rodriguez and Rosenberg [153].
Stoker polyhedra have vertices which are either convex or are of saddle type. The
latter means that the vertex has degree 4 and the edges around that vertex alternate
between valley and ridge types. Saddle vertices have the property that unit normals
to the faces around the vertex form the vertices of a convex geodesic polygon in
the sphere. This local convexity property of the Gauss map is the key ingredient
to generalizing Cauchy’s rigidity theorem to nonconvex polyhedra [153]. Rigidity of
some other classes of nonconvex polyhedra have also been established in papers of
Schlenker with Izmetsiev [103] and Connolly [40].

An even greater surprise, than flexibility of nonconvex polyhedra, is the flexibility
of C1 isometric embeddings. For instance one can squeeze the unit sphere into an
an arbitrarily small ball through a continuous one-parameter family of isometric C1
immersions [23]! Thus the C2 requirement in the above problem is not superfluous.
The remarkable nature of C1 isometric embeddings were first discovered by Nash
and Kuiper, and further developed by Gromov [81] within the frame work of the
h-Principle theory; see also the book by Eliashberg and Mishachev [53]. In this
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context, the flexibility of the C1 isometric embeddings corresponds to the existence
of a parametric h-principle for these maps.

The fourth point to keep in mind, with regard to Problem 1.1, is that it is impor-
tant that the ambient space be R3. Indeed Pinkall [147] showed that flat tori flex
isometrically in S3—a phenomenon which was studied further by Kitagawa [108].

Finally we should mention the paper by Almgren and Rivin [12] where it is shown
that the mean curvature integral must be preserved under isometric flexing.

1.2. Rigidity of tight surfaces. Traditional approaches for studying Problem 1.1
consist of breaking the surface up into negatively curved and positively curved re-
gions, and studying the flexibility of these regions individually. This method was
used by Alexandrov [7] to establish the rigidity of analytic surfaces with total pos-
itive curvature 2π (e.g., tori of revolution) which are also known as tight surfaces
[33, 113, 29], and are natural higher genus analogues of convex surfaces. Subse-
quently, Nirenberg [140, 94] made a beautiful but incomplete attempt at generalizing
Alexandrov’s result to smooth surfaces. Thus we have

Problem 1.2 (Alexandrov [7] 1938; and Nirenberg [140] 1962). Are all smooth tight
surfaces in R3 rigid?

In the polyhedral case Banchoff [17] has shown that the answer to the above
question is no. Nirenberg observed that the convex part of smooth tight surfaces
are rigid, thus the above problem comes down to the following question:

Problem 1.3. Are negatively curved annuli bounded by a pair of fixed convex planar
curves rigid?

The main obstacle Nirenberg encountered in answering this question could be
lifted by a negative answer to the following question: Can a negatively curved an-
nulus in R3, bounded by a pair of convex planar curves, have a closed asymptotic
curve? A curve in a surface is asymptotic if the normal curvature of the surface
always vanishes in directions tangent to the curve. One way to approach the above
problem is as follows. Suppose that we have a smooth closed curve Γ immersed in
R3 which admits a continuous family of osculating planes, i.e., planes which con-
tain the first and second derivatives of Γ. Then the binormal vector field of Γ may
be defined as any continuous vector field which is orthogonal to these osculating
planes. If Γ is an asymptotic curve in a surface M , then the gauss map of M gives
a binormal vector field along Γ. Thus Nirenberg’s problem leads to the following
question:

Problem 1.4. Let Γ be a smooth closed curve immersed in R3. Suppose that Γ has
a continuous binormal vector field B which is one-to-one. Does it follow then that
the ribbon (Γ, B) is twisted? In other words, must the linking number between Γ and
Γ + εB be nonzero?

A positive answer to the last question will settle Problem 1.2. This approach has
been discussed in [112]; however, subject to regularity assumptions not warranted
by the question. Further, existence of closed asymptotic curves on negatively curved
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surfaces has also been studied by Arnold [16] who raised a number of interesting
questions as well.

1.3. Surfaces with prescribed boundary. On the other hand, understanding
the flexibility of positively curved surfaces with boundary is also important as far
as Problems 1.1 and 1.2 are concerned. Here, a fundamental questions is:

Problem 1.5 (Yau [189], 1990). Given a metric of positive curvature on the disk
what is the condition on a space curve to form the boundary of an isometric embed-
ding of the disk?

A nontrivial necessary condition has been discovered by H. Rosenberg [157], in-
volving the self-linking number, and a result of the author [61] provides a sufficient
criterion; however, a complete characterization is not yet known. In particular,
Gluck and Pan [77] constructed an example to show that Rosenberg’s condition was
not sufficient. Also we should note that Guan and Spruck [87], as well as Trudinger
and Wang [184], have shown that if a curve bounds a surface of positive curvature,
then it bounds a surface of constant positive curvature. Thus Problem 1.5 may be
regarded as a boundary value problem for a PDE of Monge-Ampere type. Another
question related to Problem 1.5 is:

Problem 1.6 (Rosenberg [157], 1993). Does every curve bounding a surface of
positive curvature in 3-space have (at least) four points where the torsion vanishes?

The author has shown recently that the answer to the last question is yes when the
surface is topologically a disk [72], through a comprehensive study of the structure
of convex caps in locally convex surfaces. Convex caps play a major role in the
seminal works of Alexandrov [10] and Pogorelov [149] on the isometric embeddings
of convex surfaces, as well as in other fundamental results in this area such as the
works by van Heijenoort [185], Sacksteder [160], and Volkov [9, Sec. 12.1]. In these
studies, however, the underlying Riemannian manifolds are assumed to be complete,
or nearly complete, as in the works of Greene and Wu [79, 80]. In [72], on the other
hand, the author studies caps of manifolds with boundary, as in the author’s previous
work with Alexander [5] and Alexander and Wong [6].

The author’s solution to the last problem in the genus zero case establishes a far
reaching generalization of the classical four vertex theorem for planar curves. The
study of special points of curvature and torsion of closed curves has generated a vast
and multifaceted literature since the works of Mukhopadhyaya [135] and A. Kneser
[111] on vertices of planar curves were published in 1910–1912, although aspects
of these investigations may be traced even further back to the study of inflections
by Möbius [133] and Klein [109], see [69, 68]. The first version of the four vertex
theorem for space curves, which was concerned with curves lying on smooth strictly
convex surfaces, was stated by Mohrmann [134] in 1917, and proved by Barner and
Flohr [19] in 1958. This result was finally extended to curves lying on the boundary
of any convex body by Sedykh [169] in 1994, after partial results by other authors
[141, 22], see also Romero-Fuster and Sedykh [154] for further refinements.
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Among various applications of four vertex theorems, we mention a paper of Berger
and Calabi et al. [150] on physics of floating bodies, and recent work of Bray and
Jauregui [26] in general relativity. See also the works of Arnold [14, 15] for relations
with contact geometry, the book of Ovsienko and Tabachnikov [144] for projective
geometric aspects, Angenent [13] for connections with mean curvature flow, which
are also discussed in [68], and Ivanisvili et al. [100, 101] for applications to the
study of Bellman functions. Other references and more background on four vertex
theorems may be found in [47, 181, 67, 145, 75].

1.4. Rigidity of Punctured surfaces. Greene and Wu showed that smooth con-
vex surfaces with finitely many points deleted remain rigid [79, 80]. So it is natural
to wonder:

Problem 1.7. Are there some nonconvex surfaces which remain rigid after finitely
many points of them have been deleted. For instance, are punctured analytic tight
surfaces, such as a torus of revolution, rigid?

1.5. Existence problems. By a celebrated theorem of Nash every Riemannian
manifold admits an isometric embedding into a Euclidean space of sufficiently high
dimension; however, much remains unknown about the smallest dimension where
this is possible for a given class of manifolds [81, 84], including 2-dimensional man-
ifolds or surfaces.

Problem 1.8 (The global isometric embedding problem, Yau [189] 1993; Gromov
[82]). Can every C∞ 2-dimensional Riemannian manifold be isometrically embedded
in R4?

It is well-known that locally the answer to the above question is yes; however, the
main local problem is the following:

Problem 1.9 (The local isometric embedding problem). Given a C∞ metric in a
neighborhood of a point in a 2-dimensional Riemannian manifold, does there exist
an isometric embedding of some neighborhood of that point into R3?

The last problem has been well studied, see the book by Han and Hong for
references [94]. In particular, it is well-known that the answer to the last problem
is yes if the curvature is strictly positive, or strictly negative. Further, in the cases
where the curvature “changes sign cleanly”, i.e., 0 is a regular value of the curvature
function, it is also known that the answer is yes. On the other hand, Pogorelov [148]
constructed a C2 metric which does not admit a local isometric embedding in R3.
See also the paper by Nadirashvilli and Yuan [137] for more results in this direction.

2. Spherical Images of Surfaces

Most problems in surface theory, including the rigidity problems mentioned ear-
lier, may be rephrased or studied in terms of the unit normal vector field or the
Gauss map of surfaces. Here we discuss three problems in this area, which may also
be classified as questions in convex integration theory.
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2.1. Directed immersions. To every (C1) immersion f : Mn → Rn+1 of a closed
oriented n-manifold M , there corresponds a unit normal vector field or Gauss map
Gf : M → Sn, which generates a set Gf (M) ⊂ Sn known as the spherical image of
f . Conversely, one may ask:

Problem 2.1 (Gromov [82]). For which sets A ⊂ Sn is there an immersion f : M →
Rn+1 such that Gf (M) ⊂ A?

Such a mapping would be called an A-directed immersion of M [53, 81, 158, 177].
It is well-known that when A 6= Sn, f must have double points, and M must be
parallelizable, e.g., M can only be the torus T2 when n = 2. Furthermore, the only
known necessary condition on A is the elementary observation that A ∪ −A = S2,
while there is also a sufficient condition due to Gromov [81, Thm. (D′), p. 186]:
A ⊂ Sn is open, and there is a point p ∈ Sn such that the intersection of A with
each great circle passing through p includes a (closed) semicircle. Note that, when
n ≥ 2, examples of sets A ⊂ Sn satisfying this condition include those which are
the complement of a finite set of points without antipodal pairs. Thus the spherical
image of a closed hypersurface can be remarkably flexible. Like most h-principle
or convex integration type arguments, however, the proof does not yield specific
examples. It is therefore natural to ask [81]: “Is there a ‘simple’ immersion T2 → R3

whose spherical image misses the four vertices of a regular tetrahedron in S2?” The
author has given an affirmative answer to this question [66], and more generally has
given a short constructive proof of the sufficiency of a slightly stronger version of
Gromov’s condition mentioned above for the existence of A-directed immersions of
parallelizable manifolds Mn−1 × S1, where Mn−1 is closed and orientable.

2.2. The shadow problem. Next we describe a problem which involves the notion
of shadows or shades on illuminated surfaces and has applications to the so called
“shape from shading” problems in computer vision [98], and various problems in
calculus variations [34, 60]. Let f : M → Rn+1 be a closed oriented n-dimensional
hypersurface in Euclidean space as before and Gf : M → Sn be its Gauss map. Then
for every unit vector u ∈ Sn (corresponding to the direction of light) the shadow (or
shade as it is known in computer vision [98]) is defined as

(1) Su := { p ∈M | 〈Gf (p), u〉 > 0 },
where 〈·, ·〉 is the standard innerproduct. In 1978, motivated by problems concerning
the stability of constant mean curvature (CMC) surfaces (or soap films) [187], H.
Wente formulated the following question, which has since become known as the
“shadow problem:

Problem 2.2 (Wente [187], 1978). Does connectedness of the shadows imply that
f(M) is convex?

In [63] the author found a complete solution to this problem in 3-space: In R3, the
answer to Problem 2.2 is yes provided that each shadow is simply connected, or
that M is topologically a sphere; otherwise, the answer is no. In particular, there is
a smooth embedded topological torus in R3 which has connected shadows in every
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direction. Indeed as the author later showed [65], every closed orientable 2-manifold
admits a smooth embedding in R3 which has connected shadows in every direction,
thus disproving a conjecture of J Choe [34]. But there is nothing known in higher
dimensions.

2.3. Minkowski problem for nonconvex surfaces. The famous problem of
Minkowski, which has been completely solved [165], is concerned with proving that
every convex surface is uniquely determined by its curvature prescribed on the sphere
via the Gauss map. The discrete version of this problem states that two convex poly-
topes whose faces are parallel and have the same area are congruent. As has been
pointed out by Yau [188] it would be interesting to find analogues of these results
for nonconvex surfaces:

Problem 2.3. Let M , M ′ ⊂ R3 be smooth orientable closed surfaces. Suppose there
exists a diffeomorphism f : M → M ′ which preserved the Gauss curvature and the
Gauss map. Does it follow then that M and M ′ are congruent?

This problem also has a discrete version:

Problem 2.4. Let P , P ′ ⊂ R3 be polyhedral surfaces. Suppose that the faces of P
and P ′ are parallel and have the same area. Does it follow then that P and P ′ are
congruent?

3. Unfoldability of Convex Polyhedra

A well-known problem [46, 142, 145, 195], which may be traced back to the Re-
naissance artist Albrecht Dürer [49], is concerned with cutting a convex polyhedral
surface P along some spanning tree T of its edges so that it may be isometrically em-
bedded, or unfolded without overlaps, into the plane. If P admits such a one-to-one
unfolding (for some choice of T ) then we say that P is unfoldable.

Problem 3.1 (Dürer [49], 1525; Shephard [170], 1975). Is every convex polytope
unfoldable?

The author has shown [70] that this is always possible after an affine transfor-
mation of the surface. In particular, unfoldability of a convex polyhedron does not
depend on its combinatorial structure, which settles a problem of Croft, Falconer,
and Guy [41, B21]. To describe this result more explicitly, assume that the poly-
hedron P is in general position with respect to L, by which we mean that for a
unit vector u parallel to L the height function 〈·, u〉 has a unique maximizer and a
unique minimizer among the vertices of P . There is an open dense set of such lines
in the real projective space RP2. In [70] it is shown that P becomes unfoldable after
a sufficiently large stretching in any such direction. To describe what we mean by
stretching it would be convenient to assume, after a rotation, that L is parallel to the
z-axis in R3, then our transformation is given by (x, y, z) 7−→ (x, y, λz). This will
have the effect of making P arbitrarily “thin” or “needle-shaped”. Thus, roughly
speaking, needle-shaped convex polytopes are unfoldable.

Dürer’s problem is the most famous question in the theory of foldings and un-
foldings [46], or origami research, which has had wide applications ranging from
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assembling satellite dishes in space to the expansion of implanted stents in human
arteries. For extensive backgroud on this problem, and an outline of the author’s
solution in the affine case, see

people.math.gatech.edu/∼ghomi/Talks/durerslides.pdf

Yet there is still no algorithm for unfolding a convex polytope injectively despite
intense efforts by computer scientists. The difficulty of Dürer’s problem is that it is
essentially an intrinsic question, yet there is no known intrinsic method to detect the
edges of a convex polyhedron. Indeed, Alexandrov’s embedding theorem for convex
surfaces [9]—which states that any locally convex polyhedral metric on S2 may be
realized as a convex polyhedron in R3—is not constructive and gives no hint as to
which geodesics between a pair of vertices are realized as edges; see also Pak [145]. In
2008, a more constructive proof was given by Bobenko and Izmestiev [24]; however,
this proof does not specify the location of the edges either. Thus Dürer’s problem
provides another opportunity to deepen our understanding of isometric embeddings.

Problem 3.2. Does there exist a reasonably simple algorithm for detecting the edges
of a convex polyhedron intrinsically?

The edge graph of P is not the unique graph in P whose vertices coincide with
those of P , whose edges are geodesics, and whose faces are convex. It seems reason-
able to expect that Dürer’s conjecture should be true if and only if it holds for this
wider class of pseudo edge graphs. This approach was studied by Tarasov [180] in
2008, who announced some negative results in this direction; however, Tarasov’s pa-
per has not been published. Checking the validity of Tarasov’s constructions would
be an important step towards solving Dürer’s problem:

Problem 3.3. Does there exist a convex polyhedron with a pseudo edge graph which
is not unfoldable.

The earliest known examples of simple edge unfoldings for convex polyhedra are
due to Dürer [49], although the problem which bears his name was first formulated
by Shephard [170]. Furthermore, the assertion that a solution can always be found,
which has been dubbed Dürer’s conjecture, appears to have been first published by
Grünbaum [85, 86]. There is empirical evidence both for and against this supposi-
tion. On the one hand, computers have found simple edge unfoldings for countless
convex polyhedra through an exhaustive search of their spanning edge trees. On
the other hand, there is still no algorithm for finding the right tree [164, 118], and
computer experiments suggest that the probability that a random edge unfolding
of a generic polyhedron overlaps itself approaches 1 as the number of vertices grow
[163]. General cut trees have been studied at least as far back as Alexandrov [9]
who first established the existence of simple unfoldings (not necessarily simple edge
unfoldings) for all convex polyhedra, see also [99, 131, 44] for recent related results.
Other references and background may be found in [46].

http://people.math.gatech.edu/~ghomi/Talks/durerslides.pdf


12 MOHAMMAD GHOMI

4. Area and Volume of Convex Surfaces

Problem 4.1 (A. D. Alexandrov [8]). Of all convex surfaces with a fixed intrinsic
diameter, is the one with the greatest area a doubled disk?

It is known that the answer to the above question is affirmative for surfaces
of revolution [121] and that in the class of tetrahedra the maximizer is, rather
surprisingly, the regular tetrahedron [119]. See also [120] for results relating the
intrinsic and extrinsic diameter of convex surfaces. For other partial results using
techniques in Riemannian geometry see [172, 161]

Problem 4.2 (Volume of surfaces of constant width). Let S ⊂ R3 be a closed
surface of constant width and fixed area. How small can the volume of S be?

The above problem has been solved in R2: the Reuleaux triangle has the least area
among all closed curves of constant width. For a recent proof of this result, which
is originally due to Blaschke and Lebesque, see Harrell [95]. For other references see
[42].

Problem 4.3 (Surfaces with strips of constant area). Let S ⊂ R3 be a closed surface
of diameter d. Suppose that there exists a constant h < d so that whenever a pair
of planes separated by a distance of h intersect S, the area of S contained between
these planes is constant. Does it then follow that S is a sphere?

5. Extremal Problems for Space Curves

What is the smallest length of wire which can be bent into a shape that never falls
through the gap behind a desk? What is the shortest orbit which allows a satellite to
survey a spherical asteroid? These are well-known open problems [193, 143, 42, 96]
in classical geometry of space curves γ : [a, b] → R3, which are concerned with
minimizing the length L of γ subject to constraints on its width w and inradius r
respectively. Here w is the infimum of the distances between all pairs of parallel
planes which bound γ, while r is the supremum of the radii of all spheres which are
contained in the convex hull of γ and are disjoint from γ. In 1994–1996 Zalgaller
[192, 193] conjectured four explicit solutions to these problems, including the cases
where γ is restricted to be closed, i.e., γ(a) = γ(b). Recently the author has been
able to employ a combination of integral geometric and topological techniques to
confirm Zalgaller’s conjectures [71] between 83% and 99% of their stated value, while
he has also found a counterexample to one of them, but sharp answers have not yet
been found.

Problem 5.1 (Zalgaller [192] 1994). What is the shortest curve in R3 with a given
width or inradius?

The author has shown that, for any rectifiable curve γ : [a, b]→ R3,

(2)
L

w
≥ 3.7669.
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Furthermore if γ is closed,

(3)
L

w
≥

√
π2 + 16 > 5.0862.

In [192] Zalgaller constructs a curve, “L3”, with L/w ≤ 3.9215. Thus (2) is better
than 96% sharp (since 3.7669/3.9215 ≥ 0.9605). Further, there exists a closed
cylindrical curve with L/w < 5.1151, which shows that (3) is at least 99.43% sharp.
In particular, the length of the shortest closed curve of width 1 is approximately
5.1.

The author has also found estimates for the inradius problem. Obviously w ≥ 2r,
and thus the above inequalities immediately yield L/r ≥ 7.5338 for general curves,
and L/r ≥ 10.1724 for closed curves. Using different techniques, however, these
estimates may be improved as follows: for any rectifiable curve γ : [a, b]→ R3,

(4)
L

r
≥

√
(π + 2)2 + 36 > 7.9104.

Furthermore if γ is closed,

(5)
L

r
≥ 6
√

3 > 10.3923.

In [194, Sec. 2.12] Zalgaller constructs a spiral curve with L/r ≤ 9.5767, which
shows that (4) is better than 82.6% optimal. Further, in [193], he produces a curve
composed of four semicircles with L/r = 4π; see also [143] where this “baseball
stitches” curve is rediscovered in 2011. Thus we may say that (5) is better than
82.69% optimal.

Both the width and inradius problems may be traced back to a 1956 question of
Bellman [20] motivated by harmonic analysis: how long is the shortest escape path
for a random point (lost hiker) inside an infinite parallel strip (forest) of known
width? See [56] for more on these types of problems. Our width problem is the
analogue of Bellman’s question in R3. The inradius problem also has an intuitive
reformulation known as the “sphere inspection” [194, 143] or the “asteroid survey-
ing” problem [31]; see

mathoverflow.net/questions/69099/shortest-closed-curve-to-inspect-a-sphere

To describe this variation, let us say that a space curve γ inspects the sphere S2,
or is an inspection curve, provided that γ lies outside S2 and for each point x of S2

there exists a point y of γ such that the line segment xy does not enter S2 (in other
words, x is “visible” from y). It is easy to see that γ inspects S2, after a translation,
if and only if its inradius is 1 [193, p. 369]. Thus finding the shortest inspection
curve is equivalent to the inradius problem for r = 1.

Problem 5.2 (Volume of the convex hull of closed curves). Let Γ be a closed curve
of fixed length L in R3. How big can the volume of the convex hull of Γ be.

For a partial result under symmetry conditions for the above problem see [130].
The above problem has been solved in Euclidean spaces of even dimensions [168].
Also the problem is solved for open arcs in R3 [51]. For some other related results
and questions see [193].

http://mathoverflow.net/questions/69099/shortest-closed-curve-to-inspect-a-sphere
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Problem 5.3 (Area of the convex hull of closed curves). Let Γ be a closed curve
of fixed length L in R3, and A be the area of the convex hull of Γ. Show that A is
biggest when Γ is a circle, in which case we consider the convex hull of Γ as a doubly
covered disk.

If Γ is a simple curve which lies on the boundary of its convex hull, then it
divides the boundary of the convex hull into a pair of disks each of which have zero
curvature. This observation together with the isoperimetric inequality for surfaces
of nonpositive curvature, first proved by Andre Weil, may be used to solve the above
problem in the case where Γ is simple and lies on the boundary of its convex hull.

6. Minimal and CMC Surfaces

Problem 6.1 (Meeks [125, 129, 126], 1978). Is every compact connected minimal
surface bounded by a pair of convex planar curves topologically an annulus?

An affirmative solution to the above problem would lead to a generalization of
Shiffman’s classical theorem [171] on level set of minimal annuli. Partial or related
results have been obtained in [167, 127, 128, 138, 155, 104, 52, 62]. See the article
by Hoffman and Meeks [97] for a nice introduction to the conjecture.

Problem 6.2 (Earp, Fabiano, Meeks, and Rosenberg [50], 1991). Does there exist
an embedded compact surface of constant mean curvature which is bounded by a
circle, but is not a piece of a sphere.

If the surface is only immersed, not embedded, then the answer to the last problem
is yes, as was shown by Kapouleas [106]. Furthermore [11] Alias, Lopez, and Palmer
showed that the answer is yes, if the surface is assumed to be stable and a topological
disk.

Problem 6.3 (Ros and Rosenberg [156], 1996). Show that any compact embedded
CMC surface which is bounded by a convex planar curve, and lies on one side of the
boundary plane, is topologically a disk.

The above problem has been affirmatively solved by Barbosa and Jorge assuming
that the surface is stable [18]. For more background and references related to the
last problem see the book of Lopez [117].

7. Negatively Curved Surfaces

The next problem is due to John Milnor [132], and would generalize famous
theorems of Hilbert and Efimov. Hilbert showed that there exists no complete
surfaces of constant negative curvature in R3, and Efimov proved that there exists
no complete surfaces of negative curvature in R3 whose curvature is bounded away
from zero. Proof of Hilbert’s theorem may be found in many elementary texts on
differential geometry. For Efimov’s proof see [132]. Some relatively recent proofs of
these results have been announced in [152].
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Problem 7.1 (Milnor [132], 1972). Are there any complete surfaces of negative
curvature in Euclidean 3-space whose principal curvatures are bounded away from
zero?

An even older problem on nagatively curved surfaces is the following:

Problem 7.2 (Hadamard [90, 27, 159], 1898). Are there any complete negatively
curved surfaces embedded in the unit ball?

In the immersed case, this conjecture was settled by Nadirashvili [136] who con-
structed complete minimal negatively curved surfaces in a ball, see also [105, 36, 123,
116]; however, such surfaces cannot be embedded, since by a result of Colding and
Minicozzi [35], an embedded minimal surface must be unbounded. An approach for
constructing a possible counterexample to the above conjecture has been outlined
by Rozendorn [159].

Problem 7.3. Does there exist any complete negatively curved surfaces with nega-
tive Euler characteristic contained in between a pair of parallel planes in R3.

It is not difficult to construct such surfaces with nonnegative Euler characteristic,
see the author’s paper with Chris Connell [37, Note 1.4]. See also [38] and [30] for
relevant results on topology of negatively surfaces.

8. Umbilic Points

Problem 8.1 (Carathéodory, 1922). Show that every closed convex surface in R3

has at least two umbilic points.

According to Struik [179], the earliest references to the conjecture attributed to
Carathéodory appear in the works of Cohn-Vossen, Blaschke, and Hamburger dating
back to 1922. The first significant results on the conjecture were due to Hamburger,
who established the analytic case in a series of long papers [91, 92, 93] published in
1940–41. Attempts to find shorter proofs attracted the attention of Bol [25], Klotz
[110], and Titus [182] in the ensuing decades. As late as 1993, however, Scherbel
[162] was still correcting some errors in these simplifications, while reconfirming
the validity of Hamburger’s theorem. Another reexamination of the proof of the
analytic case appears in a comprehensive paper of Ivanov [102] who supplies his
own arguments for clarifying various details. All the works mentioned thus far have
been primarily concerned with establishing the analytic version of a local conjecture
attributed to Loewner, which states that

Problem 8.2 (Loewner). Show that the index of any singularity of a principal line
fields on a surface is at most one.

A positive resolution of Loewner’s conjecture would imply Carathéodory’s con-
jecture via Poincaré-Hopf index theorem. See Smyth and Xavier [173, 174, 175]
for studies of Loewner’s conjecture in the smooth case, and Lazarovici [114] for a
global result on principal foliations. Another global result is by Feldman [55], who
showed that generic closed convex surfaces have four umbilics; also see [74] for some
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applications of the h-principle to studying homotopy classes of principal lines. A
global generalization of Carathéodory’s conjecture is discussed in [57]. There is also
an interesting analogue of the conjecture for noncompact complete convex hyper-
surfaces:

Problem 8.3 (Toponogov [183], 1995). Let M be a complete noncompact convex
surface in R3, with principal curvatures k1, k2, then show that infM |k1 − k2| = 0.

In other words, Toponogov suggests that every complete noncompact convex
surface must have an umbilic “at infinity”. A number of approaches to prov-
ing the Carathéodory or Loewner conjecture in the smooth case are discussed in
[144, 139, 88], and more references or background may be found in [176, 89]. In
recent joint work with Ralph Howard [73], the author has found some real evidence
in support of this conjecture. At the same time we constructed a number of surfaces
which may be considered counterexamples in a weak sense. A number of approaches
to proving the Carathéodory or Loewner conjecture in the smooth case are discussed
in [144, 139, 88]. In particular Guilfoyle and Klingenberg [88] announced a solution
to the conjecture in 2008, although that work does not seem to have been published
yet. More references or background may be found in [176, 89].
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[36] P. Collin and H. Rosenberg. Notes sur la démonstration de n. nadirashvili des conjectures de

hadamard et calabi–yau. Bulletin des sciences mathematiques, 123(7):563–575, 1999.
[37] C. Connell and M. Ghomi. Topology of negatively curved real affine algebraic surfaces. J.

Reine Angew. Math., 624:1–26, 2008.
[38] C. Connell and J. Ullman. Ends of negatively curved surfaces in euclidean space. manuscripta

mathematica, 131(3-4):275–303, 2010.
[39] R. Connelly. Rigidity. In Handbook of convex geometry, Vol. A, B, pages 223–271. North-

Holland, Amsterdam, 1993.
[40] R. Connelly and J.-M. Schlenker. On the infinitesimal rigidity of weakly convex polyhedra.

European J. Combin., 31(4):1080–1090, 2010.



18 MOHAMMAD GHOMI

[41] H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved problems in geometry. Problem Books in
Mathematics. Springer-Verlag, New York, 1991. Unsolved Problems in Intuitive Mathematics,
II.

[42] H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved problems in geometry. Springer-Verlag,
New York, 1994. Corrected reprint of the 1991 original [MR 92c:52001], Unsolved Problems
in Intuitive Mathematics, II.

[43] B. E. J. Dahlberg. The converse of the four vertex theorem. Proc. Amer. Math. Soc.,
133(7):2131–2135 (electronic), 2005.

[44] E. D. Demaine, M. L. Demaine, V. Hart, J. Iacono, S. Langerman, and J. O’Rourke. Contin-
uous blooming of convex polyhedra. Graphs Combin., 27(3):363–376, 2011.

[45] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The open problems project,
cs.smith.edu/∼orourke/topp/.

[46] E. D. Demaine and J. O’Rourke. Geometric folding algorithms. Cambridge University Press,
Cambridge, 2007. Linkages, origami, polyhedra.

[47] D. DeTurck, H. Gluck, D. Pomerleano, and D. S. Vick. The four vertex theorem and its
converse. Notices Amer. Math. Soc., 54(2):192–207, 2007.

[48] S. Donaldson. Some problems in differential geometry and topology. Nonlinearity, 21(9):T157,
2008.
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[116] F. López, F. Mart́ın, S. Morales, et al. Adding handles to nadirashvili’s surfaces. J. Differential
Geom, 60(1):155–175, 2002.
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