A NEW VERSION OF THE ISOMORPHIC BUSEMANN-PETTY PROBLEM FOR ARBITRARY FUNCTIONS

We consider the isomorphic Busemann-Petty problem for two different functions, as follows.

Theorem 1. Let K, L be star bodies in \mathbb{R}^n, let $0 < k < n$, and let f, g be non-negative locally integrable functions on \mathbb{R}^n so that $\|g\|_\infty = g(0) = 1$ and

$$\int_{K \cap H} f \leq \int_{L \cap H} g$$

(1)

for all $(n - k)$-dimensional linear subspaces $H \subset \mathbb{R}^n$. Then

$$\int_K f \leq (d_{ovr}(K, \mathcal{BP}^n_k))^k \frac{n}{n - k} \left| K \right|^\frac{k}{n} \left(\int_L g \right)^\frac{n-k}{n}.$$

Here $d_{ovr}(K, \mathcal{BP}^n_k)$ is the outer volume ratio distance from the body K to the class of generalized k-intersection bodies in \mathbb{R}^n.

One advantage over previously known results is that the Banach-Mazur distance is replaced by smaller outer volume ratio distance. In particular, this allows to get an absolute constant in the case where K is an unconditional convex body. Also this version immediately implies the slicing inequality for arbitrary functions, similar to the case of volume.

This is joint work with Grigoris Paouris and Artem Zvavitch.