A variant of Kuperberg’s proof of the Bourgain-Milman theorem

Bo Berndtsson
Some points in the slides require additional explanation, either because what is written is not literally true as it stands, or is not obvious.

These points are indicated by a ’(!)’ and will be explained verbally during the lecture.
Let K be a convex body in \mathbb{R}^n.

$$K^\circ := \{\xi; \xi \cdot x \leq 1; x \in K\}.$$

The Mahler volume of K is

$$M(K) = |K|\|K^\circ|.$$

\textit{Kuperberg’s theorem:}

Theorem

$$M(K) \geq \pi^n/n!$$

if K is symmetric.
Scheme of Kuperberg’s proof: Define a quantity $Q(K)$ (‘energy’ or ‘Gauss linking integral’) such that

$$M(K) \geq Q(K)$$

and

$$Q(K) \geq \frac{\pi^n}{n!}.$$

Strangely, $Q(K)$ is minimized when K is a ball.
Variant: Let ϕ be a convex function on \mathbb{R}^n. The Legendre transform is defined as

$$
\phi^*(\xi) = \sup_x \xi \cdot x - \phi(x).
$$

Theorem

$$
\int e^{-\phi} \int e^{-\phi^*} \geq \pi^n,
$$

if ϕ is symmetric.
Scheme of proof: Define a quantity $Q(\phi)$ such that

$$M(\phi) := \int e^{-\phi} \int e^{-\phi^*} \geq Q(\phi)$$

and

$$Q(\phi) \geq \pi^n.$$

$Q(\phi)$ is minimized for $\phi = \phi_0 = x^2/2$.

What is $Q(\phi)$?
Let
\[\lambda = \{(x, \xi); \xi = \partial \phi(x)/\partial x\} \subset \mathbb{R}^{2n}. \]
Let
\[\Lambda = \Lambda = \lambda \times \lambda = \{(x, \xi, y, \eta); \xi = \partial \phi(x)/\partial x, \eta = \partial \phi(y)/\partial y\}. \]
Now write \(z = x + iy, \zeta = \xi + i\eta \) and let
\[\Omega = ((i/2) \sum dz_j \wedge d\bar{\zeta}_j)^n/n! = \omega^n/n!. \]
\(\omega \) can be seen as a holomorphic symplectic form on \(\mathbb{C}^{2n} \). (!)
We first put
\[I(\phi) = \int_{\Lambda} e^{-(1/2)z \cdot \bar{\zeta}} \Omega. \]
Then we let
\[Q(\phi) = 2^{-n} \int_{\Lambda} |e^{-(1/2)z \cdot \bar{\zeta}} \Omega| = 2^{-n} \int_{\Lambda} e^{-(1/2)(\xi \cdot x + \eta \cdot y)} |\Omega| \]
\[|I(\phi)| \leq \int_{\Lambda} e^{-1/2(\xi \cdot x + \eta \cdot y)} |\Omega| = 2^n Q(\phi). \]

The point is that \(I(\phi) \) is independent of \(\phi \) since it is the integrand of a closed form. (!) Take \(\phi = \phi_0 = x^2 / 2 \). Then \(\Lambda = \{ z = \zeta \} \), and

\[\Omega = (i/2 \sum dz_j \wedge d\bar{z}_j)^n / n! = dm, \]

volume form on \(\mathbb{C}_z^n \). Hence

\[I(\phi) = I(\phi_0) = \int_{\mathbb{C}_z^n} e^{- (1/2)|z|^2} dm = (2\pi)^n. \]

Hence \(O(\phi) \geq \pi^n \).
It remains to prove the estimate from above of Q,

$$Q(\phi) \leq M(\phi).$$

Recall

$$\phi^*(\xi) = \sup_x \xi \cdot x - \phi(x), \quad \text{eq. for } \xi = \partial \phi(x).$$

Hence

$$\phi(x) + \phi^*(\xi) = \xi \cdot x, \quad \text{on } \Lambda, \quad \text{and} \quad \phi(y) + \phi^*(\eta) = \eta \cdot y.$$

Let

$$\pi : \Lambda \to \mathbb{R}^{2n}_{ts}, \quad t = (x + y)/2, \quad s = (\xi - \eta)/2.$$

Lemma

π is injective, and surjective if ϕ grows faster than any linear function.
To prove the lemma, let for \(t \) fixed.

\[
A_t = \{ x + y = 2t \}.
\]

Put

\[
\Phi(x) = \phi(x) + \phi(2t - x).
\]

Then

\[
\frac{\partial \Phi}{\partial x} = \frac{\partial \phi(x)}{\partial x} - \frac{\partial \phi(y)}{\partial y} = \xi - \eta.
\]

Hence injective if \(\phi \) is strictly convex and surjective if \(\phi \) grows faster than linearly.
Pulling back the Mahler integral to Λ we get

$$M(\phi) = \int_{\mathbb{R}^{2n}} e^{-\phi(t)+\phi^*(s)} dt ds = \int_{\Lambda} e^{-(\phi+\phi^*) \circ \pi \pi^* (dt ds)}.$$

Lemma

$$\pi^*(dt ds) = 2^{-n}|\Omega|.$$

Accepting this we get

$$M(\phi) = 2^{-n} \int_{\Lambda} e^{-(\phi((x+y)/2)+\phi^*((\xi-\eta)/2))}|\Omega| \geq$$

$$2^{-n} \int_{\Lambda} e^{-(1/2)(\phi(x)+\phi(y)+\phi^*(\xi)+\phi^*(\eta))}|\Omega| =$$

$$2^{-n} \int_{\Lambda} e^{-(1/2)(x \cdot \xi + y \cdot \eta)}|\Omega| = Q(\phi).$$
It remains to prove that

$$\pi^*(dt ds) = 2^{-n}|\Omega|.$$

Recall that $\Omega = \omega^n/n!$,

$$\omega = (i/2) \sum dz_j \wedge d\bar{\zeta}_j = (i/2)(\sum dx_j \wedge d\xi_j + dy_j \wedge d\eta_j + i \sum dy_j \wedge d\xi_j - dx_j \wedge d\eta_j).$$

Put $\tau = \sum dt_j \wedge ds_j; dt ds = \pm \tau^n/n!$. Then

$$\pi^*(\tau) = (1/4) \sum (dx_j + dy_j) \wedge (d\xi_j - d\eta_j) = (1/4) \sum dx_j \wedge d\xi_j - dy_j \wedge d\eta_j + dy_j \wedge d\xi_j - dx_j \wedge d\eta_j).$$

Compare and use $\sum dx_j \wedge d\xi_j = \sum dy_j \wedge d\eta_j = 0. (!)$
Remarks

As we said ω is a holomorphic symplectic form on \mathbb{C}^{2n}. Its real and imaginary parts are both real symplectic forms. The real part vanishes on Λ. The imaginary part is a symplectic form on Λ, i.e. nondegenerate there. The point of the main lemma is that $x + y = 2t$ and $\xi - \eta = 2s$ are Darboux coordinates on Λ; they transform the imaginary part to the standard symplectic form on \mathbb{R}^{2n}.
Comments on Nazarov’s proof

Nazarov considers Bergman spaces of the form

\[A^2_K = \{ f \in H; \int_{x \in K} |f(x + iy)|^2 dx dy < \infty \}. \]

The Bergman kernel for such a space is

\[B(z) = \sup_f |f(z)|^2 / \| f \|^2. \]

His main technical result is

Theorem

\[B(0) \geq c^n |K|^{-2}. \]
The main difficulty in an estimate of the Bergman kernel from below is that one needs to construct a function f which has a large value at a point compared to its norm. He uses Hörmander’s L^2-estimates for $\bar{\partial}$.

The next step is to couple the thm with an estimate from above (which is more elementary)

$$B(0) \leq \pi^n |K^\circ|/|K|.$$

The result is

$$c^n |K|^{-2} \leq B(0) \leq \pi^n |K^\circ|/|K|,$$

which gives the BM-theorem.
More generally, we can consider Bergman spaces defined by a convex function ϕ

$$A^2_\phi = \{ f \in H; \int |f(x + iy)|^2 e^{-\phi(x)} \, dx \, dy < \infty \}.$$

The analog of the upper estimate is then

$$B(0) \leq \pi^n \frac{\int e^{-\phi^*}}{\int e^{-\phi}}.$$
\[A_{\phi+\psi}^2 = \{ f \in H; \int |f(x + iy)|^2 e^{-(\phi(x)+\psi(x))} \, dx \, dy < \infty \}. \]

Let

\[B_{\phi,\psi}^2 = \{ f \in H; \int |f(x + iy)|^2 e^{-(\phi(x)+\psi(y))} \, dx \, dy < \infty \} \]

and let \(B' \) be the Bergman kernel for the second space.

Theorem

\[B'(0) \leq C^n B(0). \]
The main interest of the theorem is that $B'(0)$ is very easy to estimate from below, since $f = 1$ lies in $B^2_{\phi, \psi}$ (but not in $A^2_{\phi + \psi}$).

$$B'(0) \geq \left(\int e^{-\phi} \int e^{-\psi} \right)^{-1}.$$

Hence, with $\psi = \phi$,

$$\left(\int e^{-\phi} \int e^{-\phi} \right)^{-1} \leq B'(0) \leq C^n B(0) \leq C_1^n \int e^{-\phi^*} \int e^{-\phi},$$

which gives BM-theorem again.
One instance of the thm is easy to see directly: If ψ is a quadratic form, e.g. $\psi(x) = x^2$.

Since $x^2 - y^2 = \text{Re} z^2$ one finds that $B(0) = B'(0)$. (!)

I do not know if one can take $C = 1$ in the theorem. If so, the above argument gives the same bound as Kuperberg’s.
The proof of the theorem uses the family of spaces

\[A_s^2 = \{ f \in H; \int |f(x + iy)|^2 e^{-(\phi(z) + \psi(sz))} \, dx \, dy < \infty \}. \]

Here \(\phi(z) = \phi(\text{Re} \, z) \) and \(s \) is a complex parameter.

Since \(\phi(z) + \phi(sz) \) is plurisubharmonic in \((s, z)\) it follows from an earlier result of mine that the logarithm of the Bergman kernel \(\log B_s(0) \) is subharmonic in \(s \).

One can therefore estimate \(B'(0) = B_{-i} \) by \(B_s(0) \) for \(s \) real by the Poisson integral representation.