The dimensional Brunn–Minkowski inequality in Gauss space

Alexandros Eskenazis
(joint work with G. Moschidis)

Online Asymptotic Geometric Analysis Seminar

May 26, 2020
The Brunn–Minkowski inequality

The classical Brunn–Minkowski inequality asserts that for every compact sets $A$, $B$ in $\mathbb{R}^n$ and $\lambda \in (0, 1)$,

$$\left| \lambda A + (1 - \lambda) B \right|^n \geq \lambda |A|^n + (1 - \lambda) |B|^n,$$

where $|\cdot|$ denotes the Lebesgue measure and the Minkowski convex combination of sets is given by $\lambda A + (1 - \lambda) B = \{ \lambda a + (1 - \lambda) b : a \in A, b \in B \}$.

This inequality captures the optimal concavity of the Lebesgue measure and becomes an equality if $A$ and $B$ are homothetic and convex.
The classical Brunn–Minkowski inequality asserts that for every compact sets \( A, B \) in \( \mathbb{R}^n \) and \( \lambda \in (0, 1) \),

\[
\left| \lambda A + (1 - \lambda)B \right|^\frac{1}{n} \geq \lambda |A|^\frac{1}{n} + (1 - \lambda)|B|^\frac{1}{n},
\]

where \( |\cdot| \) denotes the Lebesgue measure and the Minkowski convex combination of sets is given by

\[
\lambda A + (1 - \lambda)B = \left\{ \lambda a + (1 - \lambda)b : a \in A, b \in B \right\}.
\]
The classical Brunn–Minkowski inequality asserts that for every compact sets $A, B$ in $\mathbb{R}^n$ and $\lambda \in (0, 1)$,

$$|\lambda A + (1 - \lambda)B|^\frac{1}{n} \geq \lambda |A|^\frac{1}{n} + (1 - \lambda) |B|^\frac{1}{n},$$

where $|\cdot|$ denotes the Lebesgue measure and the Minkowski convex combination of sets is given by

$$\lambda A + (1 - \lambda)B = \{\lambda a + (1 - \lambda)b : a \in A, b \in B\}.$$

This inequality captures the optimal concavity of the Lebesgue measure and becomes an equality if $A$ and $B$ are homothetic and convex.
Broadly speaking, modern Brunn–Minkowski theory tries to relate the size of the sum of given sets with the size of the individual summands, where size and sum are interpreted more loosely than in the classical Brunn–Minkowski inequality.
Broadly speaking, modern Brunn–Minkowski theory tries to relate the size of the sum of given sets with the size of the individual summands, where size and sum are interpreted more loosely than in the classical Brunn–Minkowski inequality.

In this talk, we will be interested in the case that:

- *Sum* refers to the usual Minkowski addition $+$ of subsets of $\mathbb{R}^n$.
- The *size* of such a set $A$ is given by its standard Gaussian measure,

$$\gamma_n(A) = \frac{1}{(2\pi)^{n/2}} \int_A e^{-|x|^2/2} \, dx,$$

where $|x|$ is the Euclidean length of a vector $x$. 
The most profound Brunn–Minkowski-type inequality for the Gaussian measure is Ehrhard's inequality (1983), which asserts that for every Borel sets \( A, B \) in \( \mathbb{R}^n \) and \( \lambda \in (0, 1) \),

\[
\Phi^{-1}(\gamma_n(\lambda A + (1-\lambda)B)) \geq \lambda \Phi^{-1}(\gamma_n(A)) + (1-\lambda)\Phi^{-1}(\gamma_n(B)),
\]

where \( \Phi^{-1}(x) \) is the inverse of the distribution function \( \Phi(x) = \gamma_1((\infty, x]) \).

Ehrhard's original proof required both sets \( A, B \) to be convex. The general version stated here is due to Borell (2003).
Ehrhard’s inequality

The most profound Brunn–Minkowski-type inequality for the Gaussian measure is Ehrhard’s inequality (1983), which asserts that for every Borel sets $A, B$ in $\mathbb{R}^n$ and $\lambda \in (0, 1)$,

$$\Phi^{-1}(\gamma_n(\lambda A + (1 - \lambda)B)) \geq \lambda \Phi^{-1}(\gamma_n(A)) + (1 - \lambda) \Phi^{-1}(\gamma_n(B)),$$

where $\Phi^{-1}$ is the inverse of the distribution function $\Phi(x) = \gamma_1((-\infty, x])$. 

Ehrhard’s original proof required both sets $A, B$ to be convex. The general version stated here is due to Borell (2003).
The most profound Brunn–Minkowski-type inequality for the Gaussian measure is Ehrhard’s inequality (1983), which asserts that for every Borel sets $A, B$ in $\mathbb{R}^n$ and $\lambda \in (0, 1)$,

$$\Phi^{-1}(\gamma_n(\lambda A + (1 - \lambda) B)) \geq \lambda \Phi^{-1}(\gamma_n(A)) + (1 - \lambda) \Phi^{-1}(\gamma_n(B)),$$

where $\Phi^{-1}$ is the inverse of the distribution function $\Phi(x) = \gamma_1((-\infty, x])$.

Ehrhard's original proof required both sets $A, B$ to be convex. The general version stated here is due to Borell (2003).
Similarly to the Brunn–Minkowski inequality, Ehrhard’s inequality captures
the optimal concavity of the Gaussian measure over all Borel sets in the
following sense.

Suppose that $\zeta_n : (0, 1) \to \mathbb{R}$ is such that for every Borel
sets $A, B$ in $\mathbb{R}^n$ with $0 < \gamma_n(A), \gamma_n(B) < 1$ and
$\lambda \in (0, 1)$,
$$
\zeta_n(\lambda \gamma_n(A) + (1 - \lambda) \gamma_n(B)) \geq \lambda \zeta_n(\gamma_n(A)) + (1 - \lambda) \zeta_n(\gamma_n(B))
$$

Then, plugging $A = \{x : x_1 < a\}$ and $B = \{x : x_1 < b\}$, we deduce that
$\zeta_n \circ \Phi$ has to be a concave function. So, the choice
$\zeta_n = \Phi^{-1}$ is extremal.

In particular, Ehrhard’s inequality becomes an equality when
$A$ and $B$ are
parallel half-spaces as above.
Ehrhard’s inequality (continued)

Similarly to the Brunn–Minkowski inequality, Ehrhard’s inequality captures the optimal concavity of the Gaussian measure over all Borel sets in the following sense. Suppose that $\zeta_n : (0, 1) \to \mathbb{R}$ is such that for every Borel sets $A, B$ in $\mathbb{R}^n$ with $0 < \gamma_n(A), \gamma_n(B) < 1$ and $\lambda \in (0, 1)$,

$$
\zeta_n(\gamma_n(\lambda A + (1 - \lambda)B)) \geq \lambda \zeta_n(\gamma_n(A)) + (1 - \lambda)\zeta_n(\gamma_n(B))
$$

Then, plugging $A = \{x : x_1 < a\}$ and $B = \{x : x_1 < b\}$, we deduce that $\zeta_n \circ \Phi$ has to be a concave function. So, the choice $\zeta_n = \Phi^{-1}$ is extremal.

In particular, Ehrhard’s inequality becomes an equality when $A$ and $B$ are parallel half-spaces as above.
Similarly to the Brunn–Minkowski inequality, Ehrhard’s inequality captures the optimal concavity of the Gaussian measure over all Borel sets in the following sense. Suppose that $\zeta_n : (0, 1) \to \mathbb{R}$ is such that for every Borel sets $A, B$ in $\mathbb{R}^n$ with $0 < \gamma_n(A), \gamma_n(B) < 1$ and $\lambda \in (0, 1)$,

$$
\zeta_n(\gamma_n(\lambda A + (1 - \lambda)B))) \geq \lambda \zeta_n(\gamma_n(A)) + (1 - \lambda) \zeta_n(\gamma_n(B))
$$

Then, plugging $A = \{x : x_1 < a\}$ and $B = \{x : x_1 < b\}$, we deduce that $\zeta_n \circ \Phi$ has to be a concave function. So, the choice $\zeta_n = \Phi^{-1}$ is extremal.
Similarly to the Brunn–Minkowski inequality, Ehrhard’s inequality captures the optimal concavity of the Gaussian measure over all Borel sets in the following sense. Suppose that $\zeta_n : (0, 1) \to \mathbb{R}$ is such that for every Borel sets $A, B$ in $\mathbb{R}^n$ with $0 < \gamma_n(A), \gamma_n(B) < 1$ and $\lambda \in (0, 1),$

$$\zeta_n\left(\gamma_n(\lambda A + (1 - \lambda)B)\right) \geq \lambda \zeta_n(\gamma_n(A)) + (1 - \lambda) \zeta_n(\gamma_n(B))$$

Then, plugging $A = \{x : x_1 < a\}$ and $B = \{x : x_1 < b\}$, we deduce that $\zeta_n \circ \Phi$ has to be a concave function. So, the choice $\zeta_n = \Phi^{-1}$ is extremal. In particular, Ehrhard’s inequality becomes an equality when $A$ and $B$ are parallel half-spaces as above.
The Gardner–Zvavitch problem

In 2010, Gardner and Zvavitch undertook a systematic investigation of Gaussian inequalities in (dual) Brunn–Minkowski theory, which they concluded by posing the following problem.

**Question (Gardner–Zvavitch, 2010)**

Is it true that for every convex sets $K, L$ in $\mathbb{R}^n$ which contain the origin and $\lambda \in (0, 1)$, the inequality

$$
\gamma_n(\lambda K + (1-\lambda)L)^{1/n} \geq \lambda \gamma_n(K)^{1/n} + (1-\lambda)\gamma_n(L)^{1/n}
$$

holds true?

- Taking $K = [-1, 1]^n$, $L = \{x\}$ and letting $x \to \infty$, it becomes clear that the dimensional Brunn–Minkowski inequality cannot hold for an arbitrary pair of convex sets in $\mathbb{R}^n$. 

Alexandros Eskenazis (Jussieu)

The Brunn–Minkowski inequality in $(\mathbb{R}^n, \gamma_n)$

May 26, 2020 6 / 27
The Gardner–Zvavitch problem

In 2010, Gardner and Zvavitch undertook a systematic investigation of Gaussian inequalities in (dual) Brunn–Minkowski theory, which they concluded by posing the following problem.

Question (Gardner–Zvavitch, 2010) Is it true that for every convex sets $K, L$ in $\mathbb{R}^n$ which contain the origin and $\lambda \in (0, 1)$, the inequality

$$\gamma_n \left( \lambda K + (1 - \lambda) L \right)^{1/n} \geq \lambda \gamma_n(K)^{1/n} + (1 - \lambda) \gamma_n(L)^{1/n}$$

holds true?

• Taking $K = [-1, 1]^n$, $L = \{x\}$ and letting $x \to \infty$, it becomes clear that the dimensional Brunn–Minkowski inequality cannot hold for an arbitrary pair of convex sets in $\mathbb{R}^n$. 

Alexandros Eskenazis (Jussieu)
The Gardner–Zvavitch problem

In 2010, Gardner and Zvavitch undertook a systematic investigation of Gaussian inequalities in (dual) Brunn–Minkowski theory, which they concluded by posing the following problem.

**Question (Gardner–Zvavitch, 2010)**

Is it true that for every convex sets $K, L$ in $\mathbb{R}^n$ which contain the origin and $\lambda \in (0, 1)$, the inequality

$$\gamma_n \left( \lambda K + (1 - \lambda) L \right)^{\frac{1}{n}} \geq \lambda \gamma_n(K)^{\frac{1}{n}} + (1 - \lambda) \gamma_n(L)^{\frac{1}{n}}$$

holds true?
The Gardner–Zvavitch problem

In 2010, Gardner and Zvavitch undertook a systematic investigation of Gaussian inequalities in (dual) Brunn–Minkowski theory, which they concluded by posing the following problem.

**Question (Gardner–Zvavitch, 2010)**

Is it true that for every convex sets $K, L$ in $\mathbb{R}^n$ which contain the origin and $\lambda \in (0, 1)$, the inequality

$$\gamma_n(\lambda K + (1 - \lambda)L)^{\frac{1}{n}} \geq \lambda \gamma_n(K)^{\frac{1}{n}} + (1 - \lambda)\gamma_n(L)^{\frac{1}{n}}$$

holds true?

- Taking $K = [-1, 1]^n$, $L = \{x\}$ and letting $x \to \infty$, it becomes clear that the dimensional Brunn–Minkowski inequality cannot hold for an arbitrary pair of convex sets in $\mathbb{R}^n$. 
The Gardner–Zvavitch problem (continued)

- In 2013, Nayar and Tkocz proved that the answer is no even for $n = 2$, but the following modification of the problem persisted.

**Question (Gardner–Zvavitch 2.0)**

Does the dimensional Brunn–Minkowski inequality for the Gaussian measure hold if $K$ and $L$ are origin symmetric?

**Theorem (E.–Moschidis, 2020)**

Yes.

**Remark.** It was already observed by Gardner and Zvavitch that the dimensional Brunn–Minkowski inequality neither trivially implies nor follows from Ehrhard's inequality.
The Gardner–Zvavitch problem (continued)

- In 2013, Nayar and Tkocz proved that the answer is no even for $n = 2$, but the following modification of the problem persisted.

**Question (Gardner–Zvavitch 2.0)**

Does the dimensional Brunn–Minkowski inequality for the Gaussian measure hold if $K$ and $L$ are **origin symmetric**?
In 2013, Nayar and Tkocz proved that the answer is no even for $n = 2$, but the following modification of the problem persisted.

**Question (Gardner–Zvavitch 2.0)**

Does the dimensional Brunn–Minkowski inequality for the Gaussian measure hold if $K$ and $L$ are origin symmetric?

**Theorem (E.–Moschidis, 2020)**

Yes.
In 2013, Nayar and Tkocz proved that the answer is no even for $n = 2$, but the following modification of the problem persisted.

**Question (Gardner–Zvavitch 2.0)**

Does the dimensional Brunn–Minkowski inequality for the Gaussian measure hold if $K$ and $L$ are origin symmetric?

**Theorem (E.–Moschidis, 2020)**

Yes.

**Remark.** It was already observed by Gardner and Zvavitch that the dimensional Brunn–Minkowski inequality neither trivially implies nor follows from Ehrhard’s inequality.
Recall that the Gaussian measure is log-concave, i.e.
\[ \gamma_n(\lambda A + (1-\lambda)B) \geq \lambda \gamma_n(A) + (1-\lambda) \gamma_n(B) \]
for every Borel sets \( A, B \) in \( \mathbb{R}^n \) and \( \lambda \in (0,1) \). The Gardner–Zvavitch problem is a strengthening of log-concavity for the smaller class of symmetric convex sets.

Another example of a symmetric refinement of log-concavity is the deep B-inequality of Cordero, Fradelizi and Maurey (2004), according to which for every symmetric convex set \( K \) in \( \mathbb{R}^n \) and every \( a, b > 0 \) and \( \lambda \in (0,1) \),
\[ \gamma_n(a\lambda b^{1-\lambda}K) \geq \lambda \gamma_n(aK) + (1-\lambda) \gamma_n(bK) \]
Notice that for every convex set \( K \),
\[ \gamma_n((\lambda a + (1-\lambda)b)K) \geq \lambda \gamma_n(aK) + (1-\lambda) \gamma_n(bK) \]
but symmetry is crucial if one wants to replace the arithmetic mean by the geometric mean.
Recall that the Gaussian measure is log-concave, i.e.

\[ \gamma_n(\lambda A + (1 - \lambda)B) \geq \gamma_n(A)\lambda \gamma_n(B)^{1-\lambda} \]

for every Borel sets \( A, B \) in \( \mathbb{R}^n \) and \( \lambda \in (0, 1) \). The Gardner–Zvavitch problem is a strengthening of log-concavity for the smaller class of symmetric convex sets.
Symmetry in Brunn–Minkowski theory  (cf. Karoly Böröczky’s talk)

Recall that the Gaussian measure is log-concave, i.e.

\[ \gamma_n(\lambda A + (1 - \lambda)B) \geq \gamma_n(A)^\lambda \gamma_n(B)^{1-\lambda} \]

for every Borel sets \( A, B \) in \( \mathbb{R}^n \) and \( \lambda \in (0, 1) \). The Gardner–Zvavitch problem is a strengthening of log-concavity for the smaller class of symmetric convex sets.

Another example of a symmetric refinement of log-concavity is the deep B-inequality of Cordero, Fradelizi and Maurey (2004), according to which for every symmetric convex set \( K \) in \( \mathbb{R}^n \) and every \( a, b > 0 \) and \( \lambda \in (0, 1) \),

\[ \gamma_n(a^\lambda b^{1-\lambda}K) \geq \gamma_n(aK)^\lambda \gamma_n(bK)^{1-\lambda}. \]

Notice that for every convex set \( K \),

\[ \gamma_n((\lambda a + (1 - \lambda)b)K) \geq \gamma_n(aK)^\lambda \gamma_n(bK)^{1-\lambda} \]

but symmetry is crucial if one wants to replace the arithmetic mean by the geometric mean.
Partial results towards the Gardner–Zvavitch problem

The following special cases of the dimensional Brunn–Minkowski inequality in Gauss space were known.

• (Gardner–Zvavitch, 2010) If $K$ and $L$ are coordinate boxes containing the origin or dilates of a given symmetric convex set.

• (Colesanti–Livshyts–Marsiglietti, 2017) If $K$ and $L$ are small perturbations of a Euclidean ball.

• (Livshyts–Marsiglietti–Nayar–Zvavitch, 2017) If $K$ and $L$ are ideals.

• (Ritoré–Yepes Nicolás, 2018) If $K$ and $L$ are weakly unconditional.


• (Böröczky–Kalantzopoulos, 2020) If $K$ and $L$ have $n$ hyperplane symmetries.
Partial results towards the Gardner–Zvavitch problem

The following special cases of the dimensional Brunn–Minkowski inequality in Gauss space were known.

• (Gardner–Zvavitch, 2010) If $K$ and $L$ are coordinate boxes containing the origin or dilates of a given symmetric convex set.
• (Colesanti–Livshyts–Marsiglietti, 2017) If $K$ and $L$ are small perturbations of a Euclidean ball.
• (Livshyts–Marsiglietti–Nayar–Zvavitch, 2017) If $K$ and $L$ are ideals.
• (Ritoré–Yepes Nicolás, 2018) If $K$ and $L$ are weakly unconditional.
• (Böröczky–Kalantzopoulos, 2020) If $K$ and $L$ have $n$ hyperplane symmetries.
Partial results towards the Gardner–Zvavitch problem

The following special cases of the dimensional Brunn–Minkowski inequality in Gauss space were known.

- (Gardner–Zvavitch, 2010) If $K$ and $L$ are coordinate boxes containing the origin or dilates of a given symmetric convex set. ✔

- (Colesanti–Livshyts–Marsiglietti, 2017) If $K$ and $L$ are small perturbations of a Euclidean ball.


- (Ritoré–Yepes Nicolás, 2018) If $K$ and $L$ are weakly unconditional.


- (Böröczky–Kalantzopoulos, 2020) If $K$ and $L$ have $n$ hyperplane symmetries.
Partial results towards the Gardner–Zvavitch problem

The following special cases of the dimensional Brunn–Minkowski inequality in Gauss space were known.

- (Gardner–Zvavitch, 2010) If $K$ and $L$ are coordinate boxes containing the origin or dilates of a given symmetric convex set. ✓
- (Colesanti–Livshyts–Marsiglietti, 2017) If $K$ and $L$ are small perturbations of a Euclidean ball. ✓
Partial results towards the Gardner–Zvavitch problem

The following special cases of the dimensional Brunn–Minkowski inequality in Gauss space were known.

• (Gardner–Zvavitch, 2010) If $K$ and $L$ are coordinate boxes containing the origin or dilates of a given symmetric convex set. ✓
• (Colesanti–Livshyts–Marsiglietti, 2017) If $K$ and $L$ are small perturbations of a Euclidean ball. ✓
• (Livshyts–Marsiglietti–Nayar–Zvavitch, 2017) If $K$ and $L$ are ideals. ✓
• (Ritoré–Yepes Nicolás, 2018) If $K$ and $L$ are weakly unconditional.

Partial results towards the Gardner–Zvavitch problem

The following special cases of the dimensional Brunn–Minkowski inequality in Gauss space were known.

- (Gardner–Zvavitch, 2010) If $K$ and $L$ are coordinate boxes containing the origin or dilates of a given symmetric convex set.
  ✔️

- (Colesanti–Livshyts–Marsiglietti, 2017) If $K$ and $L$ are small perturbations of a Euclidean ball.
  ✔️

  ✔️

- (Ritoré–Yepes Nicolás, 2018) If $K$ and $L$ are weakly unconditional.
  ✔️


- (Böröczky–Kalantzopoulos, 2020) If $K$ and $L$ have $n$ hyperplane symmetries.
Partial results towards the Gardner–Zvavitch problem

The following special cases of the dimensional Brunn–Minkowski inequality in Gauss space were known.

- (Gardner–Zvavitch, 2010) If $K$ and $L$ are coordinate boxes containing the origin or dilates of a given symmetric convex set.

- (Colesanti–Livshyts–Marsiglietti, 2017) If $K$ and $L$ are small perturbations of a Euclidean ball.


- (Ritoré–Yepes Nicolás, 2018) If $K$ and $L$ are weakly unconditional.

Partial results towards the Gardner–Zvavitch problem

The following special cases of the dimensional Brunn–Minkowski inequality in Gauss space were known.

• (Gardner–Zvavitch, 2010) If $K$ and $L$ are coordinate boxes containing the origin or dilates of a given symmetric convex set. ✓
• (Colesanti–Livshyts–Marsiglietti, 2017) If $K$ and $L$ are small perturbations of a Euclidean ball. ✓
• (Livshyts–Marsiglietti–Nayar–Zvavitch, 2017) If $K$ and $L$ are ideals. ✓
• (Ritoré–Yepes Nicolás, 2018) If $K$ and $L$ are weakly unconditional. ✓
• (Böröczky–Kalantzopoulos, 2020) If $K$ and $L$ have $n$ hyperplane symmetries. ✓
The local Gardner–Zvavitch problem

In 2018, Kolesnikov and Livshyts took a different route to attack the Gardner–Zvavitch problem (inspired by important earlier work of Kolesnikov and E. Milman). The main idea is to prove the dimensional Brunn–Minkowski inequality “infinitesimally”, that is, when $K$ and $L$ are small perturbations of each other.
The local Gardner–Zvavitch problem

In 2018, Kolesnikov and Livshyts took a different route to attack the Gardner–Zvavitch problem (inspired by important earlier work of Kolesnikov and E. Milman). The main idea is to prove the dimensional Brunn–Minkowski inequality “infinitesimally”, that is, when $K$ and $L$ are small perturbations of each other.

Recall that the generator of the Ornstein–Uhlenbeck semigroup is the elliptic differential operator $\mathcal{L}$ whose action on a smooth function $u : \mathbb{R}^n \to \mathbb{R}$ is given by

$$\forall \ x \in \mathbb{R}^n, \quad \mathcal{L}u(x) = \Delta u(x) - \sum_{i=1}^{n} x_i \partial_i u(x).$$
In 2018, Kolesnikov and Livshyts took a different route to attack the Gardner–Zvavitch problem (inspired by important earlier work of Kolesnikov and E. Milman). The main idea is to prove the dimensional Brunn–Minkowski inequality “infinitesimally”, that is, when $K$ and $L$ are small perturbations of each other.

Recall that the generator of the Ornstein–Uhlenbeck semigroup is the elliptic differential operator $\mathcal{L}$ whose action on a smooth function $u : \mathbb{R}^n \to \mathbb{R}$ is given by

$$\forall \, x \in \mathbb{R}^n, \quad \mathcal{L} u(x) = \Delta u(x) - \sum_{i=1}^{n} x_i \partial_i u(x).$$

We also denote by $\|A\|_{HS}$ the Hilbert–Schmidt norm of a matrix $A$, which is given by $\|A\|_{HS}^2 = \sum_{i,j} a_{ij}^2$. 

The local Gardner–Zvavitch problem

Alexandros Eskenazis (Jussieu)
The local Gardner–Zvavitch problem (continued)

They proved the following local-to-global principle.

**Proposition (Kolesnikov–Livshyts, 2018)**

Let $\delta \in [0, 1]$ be such that for every symmetric convex set $K$ in $\mathbb{R}^n$, every smooth symmetric function $u : K \to \mathbb{R}$ with $\mathcal{L}u = 1$ on $K$ satisfies

$$
\mathcal{F}(u) := \frac{1}{\gamma_n(K)} \int_K \|\nabla^2 u\|_{HS}^2 + |\nabla u|^2 \, d\gamma_n \geq \frac{\delta}{n}.
$$

Then, for every symmetric convex sets $K, L$ in $\mathbb{R}^n$ and every $\lambda \in (0, 1)$,

$$
\gamma_n(\lambda K + (1 - \lambda)L)^{\delta/n} \geq \lambda \gamma_n(K)^{\delta/n} + (1 - \lambda) \gamma_n(L)^{\delta/n}.
$$
The local Gardner–Zvavitch problem (continued)

They proved the following local-to-global principle.

**Proposition (Kolesnikov–Livshyts, 2018)**

Let \( \delta \in [0, 1] \) be such that for every symmetric convex set \( K \) in \( \mathbb{R}^n \), every smooth symmetric function \( u : K \to \mathbb{R} \) with \( \mathcal{L}u = 1 \) on \( K \) satisfies

\[
\mathcal{F}(u) := \frac{1}{\gamma_n(K)} \int_K \|\nabla^2 u\|_{\text{HS}}^2 + |\nabla u|^2 \, d\gamma_n \geq \frac{\delta}{n}.
\]

Then, for every symmetric convex sets \( K, L \) in \( \mathbb{R}^n \) and every \( \lambda \in (0, 1) \),

\[
\gamma_n(\lambda K + (1 - \lambda) L)^{\frac{\delta}{n}} \geq \lambda \gamma_n(K)^{\frac{\delta}{n}} + (1 - \lambda) \gamma_n(L)^{\frac{\delta}{n}}.
\]

The main result of their paper is that if \( K \) contains the origin and \( u \) is any smooth function with \( \mathcal{L}u = 1 \) on \( K \), then \( \mathcal{F}(u) \geq \frac{1}{2n} \), thus implying Gaussian BM with exponent \( \frac{1}{2n} \) for such convex sets.
The local Gardner–Zvavitch problem (continued)

Our main result is the following.

Theorem (E.–Moschidis, 2020)

For every $n \in \mathbb{N}$ and every symmetric convex set $K$ in $\mathbb{R}^n$, every smooth symmetric function $u : K \to \mathbb{R}$ with $Lu = 1$ on $K$, satisfies

$$\frac{1}{n} \gamma_n(K) \int_K \|\nabla^2 u\|_{HS}^2 + |\nabla u|^2 \, d\gamma_n \geq 1.$$

Plan for the rest of the talk.

We will first go over the proof of the local-to-global principle and then show the proof of the local inequality above. Towards the end we will also discuss a related open problem.

Alexandros Eskenazis (Jussieu)
Our main result is the following.

**Theorem (E.–Moschidis, 2020)**

For every $n \in \mathbb{N}$ and every symmetric convex set $K$ in $\mathbb{R}^n$, every smooth symmetric function $u : K \to \mathbb{R}$ with $\mathcal{L}u = 1$ on $K$, satisfies

$$\frac{1}{\gamma_n(K)} \int_K \|\nabla^2 u\|^2_{HS} + |\nabla u|^2 \, d\gamma_n \geq \frac{1}{n}.$$
The local Gardner–Zvavitch problem (continued)

Our main result is the following.

**Theorem (E.–Moschidis, 2020)**

For every $n \in \mathbb{N}$ and every symmetric convex set $K$ in $\mathbb{R}^n$, every smooth symmetric function $u : K \to \mathbb{R}$ with $\mathcal{L} u = 1$ on $K$, satisfies

\[ \frac{1}{\gamma_n(K)} \int_K \|\nabla^2 u\|^2_{\text{HS}} + |\nabla u|^2 \, d\gamma_n \geq \frac{1}{n}. \]

**Plan for the rest of the talk.** We will first go over the proof of the local-to-global principle and then show the proof of the local inequality above. Towards the end we will also discuss a related open problem.
The local-to-global principle

Let \( \mu(x) = e^{-V(x)} dx \) be a log-concave measure. Fix two smooth, symmetric, strictly convex sets \( K, L \) in \( \mathbb{R}^n \). If \( K_\lambda = (1-\lambda)K + \lambda L \), we want to understand whether \( M(\lambda) := \mu(K_\lambda) \delta_n \) is concave on \( [0,1] \). In other words, we want to understand whether the following inequality holds:

\[
\forall \lambda \in (0,1), \quad M''(\lambda) M(\lambda) \leq n - \delta_n M'(\lambda)^2.
\]

Simple observation. By the homogeneity of the problem, it is equivalent to take \( \lambda = 0 \) and examine whether

\[
M''(0) M(0) \leq n - \delta_n M'(0)^2.
\]

Notice that if \( \psi: S^{n-1} \to \mathbb{R} \) is given by \( \psi(\theta) = h_L(\theta) - h_K(\theta) \), then \( \psi \) is even and \( h_K_\lambda = h_K + \lambda \psi \).
The local-to-global principle

Let \( d\mu(x) = e^{-V(x)} \, dx \) be a log-concave measure. Fix two smooth, symmetric, strictly convex sets \( K, L \) in \( \mathbb{R}^n \). If \( K_\lambda = (1 - \lambda)K + \lambda L \), we want to understand whether \( M(\lambda) := \mu(K_\lambda)^{\frac{\delta}{n}} \) is concave on \([0, 1]\). In other words, we want to understand whether the following inequality holds:

\[
\forall \lambda \in (0, 1), \quad M''(\lambda)M(\lambda) \leq \frac{n - \delta}{n} M'(\lambda)^2.
\]
The local-to-global principle

Let $d\mu(x) = e^{-V(x)} \, dx$ be a log-concave measure. Fix two smooth, symmetric, strictly convex sets $K, L$ in $\mathbb{R}^n$. If $K_\lambda = (1 - \lambda)K + \lambda L$, we want to understand whether $M(\lambda) := \mu(K_\lambda)^{\frac{\delta}{n}}$ is concave on $[0, 1]$. In other words, we want to understand whether the following inequality holds:

$$\forall \lambda \in (0, 1), \quad M''(\lambda)M(\lambda) \leq \frac{n - \delta}{n} M'(\lambda)^2.$$  

**Simple observation.** By the homogeneity of the problem, it is equivalent to take $\lambda = 0$ and examine whether

$$M''(0)M(0) \leq \frac{n - \delta}{n} M'(0)^2.$$
The local-to-global principle

Let $d\mu(x) = e^{-V(x)}\,dx$ be a log-concave measure. Fix two smooth, symmetric, strictly convex sets $K, L$ in $\mathbb{R}^n$. If $K_\lambda = (1 - \lambda)K + \lambda L$, we want to understand whether $M(\lambda) := \mu(K_\lambda)^{\frac{\delta}{n}}$ is concave on $[0, 1]$. In other words, we want to understand whether the following inequality holds:

$$\forall \lambda \in (0, 1), \quad M''(\lambda)M(\lambda) \leq \frac{n - \delta}{n}M'(\lambda)^2.$$ 

**Simple observation.** By the homogeneity of the problem, it is equivalent to take $\lambda = 0$ and examine whether

$$M''(0)M(0) \leq \frac{n - \delta}{n}M'(0)^2.$$ 

Notice that if $\psi : \mathbb{S}^{n-1} \to \mathbb{R}$ is given by $\psi(\theta) = h_L(\theta) - h_K(\theta)$, then $\psi$ is even and

$$h_{K_\lambda} = h_K + \lambda \psi.$$
Lemma (Kolesnikov–E. Milman)

For \( x \in \partial K \), let \( n_x \) be the unit normal of \( \partial K \) at \( x \) and define \( f : \partial K \to \mathbb{R} \) by \( f(x) = \psi(n_x) \). Then

\[
M'(0) = \int_{\partial K} f(x) \, d\mu_{\partial K}(x)
\]

and

\[
M''(0) = \int_{\partial K} H_x f(x)^2 - \langle II^{-1}(x) \nabla_{\partial K} f(x), \nabla_{\partial K} f(x) \rangle \, d\mu_{\partial K}(x),
\]

where \( \mu_{\partial K} \) is the restriction of \( \mu \) on \( \partial K \), \( II \) is the second fundamental form of \( \partial K \) and \( H_x \) is the weighted mean curvature at \( x \), i.e.

\[
H_x = \text{tr}(II(x)) - \langle \nabla V(x), n_x \rangle.
\]
So, we have to show that for every symmetric $K$ and every even function $f : \partial K \to \mathbb{R}$,

$$\int_{\partial K} Hf^2 - \langle II^{-1} \nabla_{\partial K} f, \nabla_{\partial K} f \rangle \, d\mu_{\partial K} \leq \frac{n - \delta}{n\mu(K)} \left( \int_{\partial K} f(x) \, d\mu_{\partial K}(x) \right)^2.$$

Remark. This inequality with $\delta = 1$ and $\mu$ being the Lebesgue measure, appeared in work of Colesanti (2008).
The local-to-global principle (continued)

So, we have to show that for every symmetric $K$ and every even function $f : \partial K \rightarrow \mathbb{R}$,

$$\int_{\partial K} Hf^2 - \langle II^{-1} \nabla_{\partial K} f, \nabla_{\partial K} f \rangle \ d\mu_{\partial K} \leq \frac{n - \delta}{n \mu(K)} \left( \int_{\partial K} f(x) \ d\mu_{\partial K}(x) \right)^2.$$

**Remark.** This inequality with $\delta = 1$ and $\mu$ being the Lebesgue measure, appeared in work of Colesanti (2008).
The local-to-global principle (continued)

Denote by $\mathcal{L}_\mu$ the elliptic operator associated to $\mu$, whose action on a smooth function $u : \mathbb{R}^n \to \mathbb{R}$ is $\mathcal{L}_\mu u = \Delta u - \langle \nabla V, \nabla u \rangle$.

**Theorem (Reilly formula)**

*For every smooth function $u : K \to \mathbb{R}$,*

$$\int_K (\mathcal{L}_\mu u)^2 \, d\mu = \int_K \|\nabla^2 u\|^2_{\text{HS}} + \langle \nabla^2 V \nabla u, \nabla u \rangle \, d\mu + \int_{\partial K} \psi \, d\mu_{\partial K},$$

*for some explicit $\psi = \psi(\partial K, V, u, \nabla u)$.*
The local-to-global principle (continued)

Denote by $\mathcal{L}_\mu$ the elliptic operator associated to $\mu$, whose action on a smooth function $u : \mathbb{R}^n \to \mathbb{R}$ is $\mathcal{L}_\mu u = \Delta u - \langle \nabla V, \nabla u \rangle$.

**Theorem (Reilly formula)**

For every smooth function $u : K \to \mathbb{R}$,

$$\int_K (\mathcal{L}_\mu u)^2 \, d\mu = \int_K \| \nabla^2 u \|_{\text{HS}}^2 + \langle \nabla^2 V \nabla u, \nabla u \rangle \, d\mu + \int_{\partial K} \Psi \, d\mu_{\partial K},$$

for some explicit $\Psi = \Psi(\partial K, V, u, \nabla u)$.

**Crucial observation!** If $f : \partial K \to \mathbb{R}$ is the Neumann boundary data of $u$, i.e. $f(x) = \langle \nabla u(x), n_x \rangle$ for $x \in \partial K$, then

$$\Phi(\partial K, V, f, \nabla f) \leq \Psi(\partial K, V, u, \nabla u).$$
Conclusion. To derive a dimensional Brunn–Minkowski inequality for \( \mu \) it suffices to show that for every symmetric convex set \( K \), for every even function \( f : \partial K \to \mathbb{R} \) there exists a \( u : K \to \mathbb{R} \) with Neumann boundary data \( f \), such that

\[
\int_{K} (\mathcal{L}_\mu u)^2 \, d\mu - \int_{K} \|\nabla^2 u\|_{\text{HS}}^2 + \langle \nabla^2 V \nabla u, \nabla u \rangle \, d\mu \\
\leq \frac{n - \delta}{n \mu(K)} \left( \int_{\partial K} f(x) \, d\mu_{\partial K}(x) \right)^2.
\]
Conclusion. To derive a dimensional Brunn–Minkowski inequality for $\mu$ it suffices to show that for every symmetric convex set $K$, for every even function $f : \partial K \to \mathbb{R}$ there exists a $u : K \to \mathbb{R}$ with Neumann boundary data $f$, such that

$$
\int_K (L_\mu u)^2 \, d\mu - \int_K \|\nabla^2 u\|^2_{\text{HS}} + \langle \nabla^2 V \nabla u, \nabla u \rangle \, d\mu \\
\leq \frac{n - \delta}{n \mu(K)} \left( \int_{\partial K} f(x) \, d\mu_{\partial K}(x) \right)^2.
$$

If $\int_{\partial K} f \, d\mu_{\partial K} = 0$, this is trivially true by the log-concavity of $\mu$, so we can rescale to $\int_{\partial K} f \, d\mu_{\partial K} = \mu(K)$. Then (...), the equation $L_\mu u = 1$ has a unique solution on $K$ with Neumann boundary condition $\langle \nabla u(x), n_x \rangle = f(x)$ and rearranging we get

$$
\frac{1}{\mu(K)} \int_K \|\nabla^2 u\|^2_{\text{HS}} + \langle \nabla^2 V \nabla u, \nabla u \rangle \, d\mu \geq \frac{\delta}{n}.
$$
Applying the above reasoning to the Lebesgue measure, we deduce that the classical Brunn–Minkowski inequality is a consequence of the following statement. For every \( K \) and every \( u : K \to \mathbb{R} \) with \( \Delta u = 1 \) on \( K \),

\[
\frac{1}{n} \int_K \| \nabla^2 u(x) \|_{HS}^2 \, dx \geq \frac{1}{n}.
\]

This is true by the pointwise inequality

\[
\| \nabla^2 u \|_{HS}^2 = n \sum_{i=1}^{\lambda_i(\nabla^2 u)^2} \geq \frac{1}{n} \left( n \sum_{i=1}^{\lambda_i(\nabla^2 u)^2} \right)^2 = \left( \text{tr} (\nabla^2 u) \right)^2 n = (\Delta u)^2 n = \frac{1}{n}.
\]
Applying the above reasoning to the Lebesgue measure, we deduce that the classical Brunn–Minkowski inequality is a consequence of the following statement. For every $K$ and every $u : K \to \mathbb{R}$ with $\Delta u = 1$ on $K$,

$$\frac{1}{|K|} \int_K \|\nabla^2 u(x)\|_{HS}^2 \, dx \geq \frac{1}{n}.$$
Applying the above reasoning to the Lebesgue measure, we deduce that the classical Brunn–Minkowski inequality is a consequence of the following statement. For every $K$ and every $u : K \to \mathbb{R}$ with $\Delta u = 1$ on $K$,

$$\frac{1}{|K|} \int_K \|\nabla^2 u(x)\|_{HS}^2 \, dx \geq \frac{1}{n}.$$ 

This is true by the pointwise inequality

$$\|\nabla^2 u\|_{HS}^2 = \sum_{i=1}^n \lambda_i (\nabla^2 u)^2 \geq \frac{1}{n} \left( \sum_{i=1}^n \lambda_i (\nabla^2 u) \right)^2 = \frac{(\text{tr}(\nabla^2 u))^2}{n} = \frac{1}{n},$$
The approach of Kolesnikov and Livshyts

\[ K \rightarrow R \text{ that satisfies } L u(x) = \Delta u(x) - \langle x, \nabla u(x) \rangle = 1. \]

Also, denote by \( \gamma_K \) the measure given by \( \gamma_K(A) = \frac{\gamma_n(A \cap K)}{\gamma_n(K)} \).

Step 1.

As in the case of Lebesgue measure,

\[ \int \| \nabla^2 u \|_{HS}^2 + |\nabla u|^2 \, d\gamma_K \geq \int (\Delta u)^2 + |\nabla u|^2 \, d\gamma_K = \int (1 + \langle x, \nabla u(x) \rangle)^2 n + |\nabla u(x)|^2 \, d\gamma_K(x). \]

Step 2.

Given \( x \in \mathbb{R}^n \),

\[ \min V \in \mathbb{R}^n (1 + \langle x, V \rangle)^2 n + |V|^2 = 1 |x|^2 + n. \]
The approach of Kolesnikov and Livshyts

Fix $K$ and $u : K \to \mathbb{R}$ that satisfies $\mathcal{L}u(x) = \Delta u(x) - \langle x, \nabla u(x) \rangle = 1$. Also, denote by $\gamma_K$ the measure given by $\gamma_K(A) = \frac{\gamma_n(A \cap K)}{\gamma_n(K)}$. 
The approach of Kolesnikov and Livshyts

Fix $K$ and $u : K \to \mathbb{R}$ that satisfies $\mathcal{L} u(x) = \Delta u(x) - \langle x, \nabla u(x) \rangle = 1$. Also, denote by $\gamma_K$ the measure given by $\gamma_K(A) = \frac{\gamma_n(A \cap K)}{\gamma_n(K)}$.

**Step 1.** As in the case of Lebesgue measure,

$$\int \|\nabla^2 u\|^2_{HS} + |\nabla u|^2 \, d\gamma_K \geq \int \frac{(\Delta u)^2}{n} + |\nabla u|^2 \, d\gamma_K$$

$$= \int \frac{(1 + \langle x, \nabla u(x) \rangle)^2}{n} + |\nabla u(x)|^2 \, d\gamma_K(x).$$
The approach of Kolesnikov and Livshyts

Fix $K$ and $u : K \to \mathbb{R}$ that satisfies $\mathcal{L}u(x) = \Delta u(x) - \langle x, \nabla u(x) \rangle = 1$. Also, denote by $\gamma_K$ the measure given by $\gamma_K(A) = \frac{\gamma_n(A \cap K)}{\gamma_n(K)}$.

**Step 1.** As in the case of Lebesgue measure,

$$\int \|\nabla^2 u\|_{\text{HS}}^2 + |\nabla u|^2 \ d\gamma_K \geq \int \frac{(\Delta u)^2}{n} + |\nabla u|^2 \ d\gamma_K$$

$$= \int \frac{(1 + \langle x, \nabla u(x) \rangle)^2}{n} + |\nabla u(x)|^2 \ d\gamma_K(x).$$

**Step 2.** Given $x \in \mathbb{R}^n$,

$$\min_{V \in \mathbb{R}^n} \frac{(1 + \langle x, V \rangle)^2}{n} + |V|^2 = \frac{1}{|x|^2 + n}. $$
Step 3. It is simple to show that for every star-shaped $K$,

$$\int \frac{1}{|x|^2 + n} \, d\gamma_K(x) \geq \int_{\mathbb{R}^n} \frac{1}{|x|^2 + n} \, d\gamma_n(x) = \frac{1}{2n} + o\left(\frac{1}{n}\right).$$
Step 3. It is simple to show that for every star-shaped $K$,

$$\int \frac{1}{|x|^2 + n} \, d\gamma_K(x) \geq \int_{\mathbb{R}^n} \frac{1}{|x|^2 + n} \, d\gamma_n(x) = \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

Remark. Step 2 is evidently not sharp, since it becomes an equality only for $u_0(x) = -\frac{1}{2} \log(|x|^2 + n)$ which satisfies

$$\mathcal{L} u_0(x) = \frac{|x|^2 - n}{|x|^2 + n} + \frac{2|x|^2}{(|x|^2 + n)^2} \neq 1.$$
Step 3. It is simple to show that for every star-shaped $K$,

$$
\int \frac{1}{|x|^2 + n} \, d\gamma_K(x) \geq \int_{\mathbb{R}^n} \frac{1}{|x|^2 + n} \, d\gamma_n(x) = \frac{1}{2n} + o\left(\frac{1}{n}\right).
$$

Remark. Step 2 is evidently not sharp, since it becomes an equality only for $u_0(x) = -\frac{1}{2} \log(|x|^2 + n)$ which satisfies

$$
\mathcal{L} u_0(x) = \frac{|x|^2 - n}{|x|^2 + n} + \frac{2|x|^2}{(|x|^2 + n)^2} \neq 1.
$$

However...

Proposition

There exists $K$ and $u : K \to \mathbb{R}$ with $\mathcal{L} u = 1$ such that

$$
\int \frac{\left(1 + \langle x, \nabla u(x) \rangle \right)^2}{n} + |\nabla u(x)|^2 \, d\gamma_K(x) = \frac{1}{2n} + o\left(\frac{1}{n}\right).
$$
Proof of the main theorem

**Theorem (E.–Moschidis, 2020)**

For every \( n \in \mathbb{N} \) and every symmetric convex set \( K \) in \( \mathbb{R}^n \), every smooth symmetric function \( u : K \to \mathbb{R} \) with \( \mathcal{L} u = 1 \) on \( K \), satisfies

\[
\int \| \nabla^2 u \|^2_{\text{HS}} + |\nabla u|^2 \, d\gamma_K \geq \frac{1}{n}.
\]
Proof of the main theorem

**Theorem (E.–Moschidis, 2020)**

For every \( n \in \mathbb{N} \) and every symmetric convex set \( K \) in \( \mathbb{R}^n \), every smooth symmetric function \( u : K \to \mathbb{R} \) with \( \mathcal{L}u = 1 \) on \( K \), satisfies

\[
\int \|\nabla^2 u\|_{\text{HS}}^2 + |\nabla u|^2 \, d\gamma_K \geq \frac{1}{n}.
\]

For a matrix \( A \), denote by \( \hat{A} \) its traceless part, \( \hat{A} = A - \frac{\text{tr}(A)}{n} \text{Id} \). Then,

\[
\|A\|_{\text{HS}}^2 = \|\hat{A}\|_{\text{HS}}^2 + \frac{(\text{tr}A)^2}{n}.
\]
Proof of the main theorem

Theorem (E.–Moschidis, 2020)

For every \( n \in \mathbb{N} \) and every symmetric convex set \( K \) in \( \mathbb{R}^n \), every smooth symmetric function \( u : K \to \mathbb{R} \) with \( \mathcal{L} u = 1 \) on \( K \), satisfies

\[
\int \| \nabla^2 u \|^2_{\text{HS}} + |\nabla u|^2 \, d\gamma_K \geq \frac{1}{n}.
\]

For a matrix \( A \), denote by \( \hat{A} \) its traceless part, \( \hat{A} = A - \frac{\text{tr}(A)}{n} \text{Id} \). Then,

\[
\| A \|^2_{\text{HS}} = \| \hat{A} \|^2_{\text{HS}} + \left( \frac{\text{tr}(A)}{n} \right)^2.
\]

In particular, if \( \hat{\nabla}^2 u \) is the traceless part of \( \nabla^2 u \), we have

\[
\| \nabla^2 u \|^2_{\text{HS}} = \| \hat{\nabla}^2 u \|^2_{\text{HS}} + \frac{(\Delta u)^2}{n}.
\]
Proof of the main theorem (continued)

\[
\|\hat{\nabla}^2 u\|_{2, \text{HS}} = \|\hat{\nabla}^2 (u - r)\|_{2, \text{HS}},
\]
for every \(r \in \text{Ker}(\hat{\nabla}^2)\), in particular \(r(x) = |x|^2\).

Then, as before
\[
\|\hat{\nabla}^2 (u - r)\|_{2, \text{HS}} = \|\nabla^2 (u - r)\|_{2, \text{HS}} - \left((\Delta (u - r))^2\right)_{x^n} = \|\nabla^2 (u - r)\|_{2, \text{HS}} - \left((\Delta u - 1)^2\right)_{x^n}.
\]
Combining these identities and using the equation \(L u = 1\),
\[
\|\nabla^2 u(x)\|_{2, \text{HS}} = \|\nabla^2 (u - r)(x)\|_{2, \text{HS}} + 2n\Delta u(x) - \frac{1}{n}.
\]
Notice that 
\[ \| \hat{\nabla}^2 u \|_{HS}^2 = \| \hat{\nabla}^2 (u - r) \|_{HS}^2, \]
for every \( r \in \text{Ker}(\hat{\nabla}^2) \), in particular \( r(x) = \frac{|x|^2}{2n} \).
Notice that
\[ \| \hat{\nabla}^2 u \|_{\text{HS}}^2 = \| \hat{\nabla}^2 (u - r) \|_{\text{HS}}^2, \]
for every \( r \in \text{Ker}(\hat{\nabla}^2) \), in particular \( r(x) = \frac{|x|^2}{2n} \). Then, as before
\[ \| \hat{\nabla}^2 (u - r) \|_{\text{HS}}^2 = \| \nabla^2 (u - r) \|_{\text{HS}}^2 - \frac{(\Delta (u - r))^2}{n} = \| \nabla^2 (u - r) \|_{\text{HS}}^2 - \frac{(\Delta u - 1)^2}{n}. \]
Proof of the main theorem (continued)

Notice that
\[
\| \hat{\nabla}^2 u \|_{\text{HS}}^2 = \| \hat{\nabla}^2 (u - r) \|_{\text{HS}}^2,
\]
for every \( r \in \text{Ker}(\hat{\nabla}^2) \), in particular \( r(x) = \frac{|x|^2}{2n} \). Then, as before
\[
\| \hat{\nabla}^2 (u - r) \|_{\text{HS}}^2 = \| \nabla^2 (u - r) \|_{\text{HS}}^2 - \frac{(\Delta (u - r))^2}{n} = \| \nabla^2 (u - r) \|_{\text{HS}}^2 - \frac{(\Delta u - 1)^2}{n}.
\]
Combining these identities and using the equation \( \mathcal{L} u = 1 \),
\[
\| \nabla^2 u(x) \|_{\text{HS}}^2 = \| \nabla^2 (u - r)(x) \|_{\text{HS}}^2 + \frac{2}{n} \Delta u(x) - \frac{1}{n}
\]
\[
= \| \nabla^2 (u - r)(x) \|_{\text{HS}}^2 + \frac{2}{n} \sum_{i=1}^{n} x_i \partial_i u(x) + \frac{1}{n}.
\]
Recall that $\gamma_K$ can be approximated by smooth measures of the form $e^{-V(x)}dx$ satisfying $\nabla^2 V \geq \beta \text{Id}.$

**Theorem (Brascamp–Lieb, 1976)**

Let $\beta \in (0, \infty)$ and $V : \mathbb{R}^n \to \mathbb{R}$ be such that $\nabla^2 V \geq \beta \text{Id}.$ Then, if $d\mu(x) = e^{-V(x)}dx,$ every smooth function $h : \mathbb{R}^n \to \mathbb{R}$ satisfies

$$\text{Var}_\mu h := \int h^2 d\mu - \left( \int h d\mu \right)^2 \leq \frac{1}{\beta} \int |\nabla h|^2 d\mu.$$ 

In particular, since each $\partial_i (u - r)$ is odd and $K$ is symmetric, we have

$$\sum_{j=1}^n \int \left( \partial_i \partial_j (u - r) \right)^2 d\gamma_K \geq \text{Var}_{\gamma_K} (\partial_i (u - r)) = \int \left( \partial_i (u - r) \right)^2 d\gamma_K.$$
The Brascamp–Lieb inequality

Recall that $\gamma_K$ can be approximated by smooth measures of the form $e^{-V(x)} \, dx$ satisfying $\nabla^2 V \geq \text{Id}$. 

Theorem (Brascamp–Lieb, 1976)

Let $\beta \in (0, \infty)$ and $V: \mathbb{R}^n \to \mathbb{R}$ be such that $\nabla^2 V \geq \beta \text{Id}$. Then, if $d\mu(x) = e^{-V(x)} \, dx$, every smooth function $h: \mathbb{R}^n \to \mathbb{R}$ satisfies

$$\text{Var}_\mu h := \int h^2 \, d\mu - (\int h \, d\mu)^2 \leq \frac{1}{\beta} \int |\nabla h|^2 \, d\mu.$$ 

In particular, since each $\partial_i (u - r)$ is odd and $K$ is symmetric, we have

$$n \sum_{j=1} \int (\partial_i \partial_j (u - r))^2 \, d\gamma_K \geq \text{Var}_{\gamma_K} (\partial_i (u - r)) = \int (\partial_i (u - r))^2 \, d\gamma_K.$$
The Brascamp–Lieb inequality

Recall that $\gamma_K$ can be approximated by smooth measures of the form $e^{-V(x)} \, dx$ satisfying $\nabla^2 V \geq \text{Id}$.

**Theorem (Brascamp–Lieb, 1976)**

Let $\beta \in (0, \infty)$ and $V : \mathbb{R}^n \to \mathbb{R}$ be such that $\nabla^2 V \geq \beta \text{Id}$. Then, if $d\mu(x) = e^{-V(x)} \, dx$, every smooth function $h : \mathbb{R}^n \to \mathbb{R}$ satisfies

$$\operatorname{Var}_\mu h := \int h^2 \, d\mu - \left( \int h \, d\mu \right)^2 \leq \frac{1}{\beta} \int |\nabla h|^2 \, d\mu.$$
The Brascamp–Lieb inequality

Recall that $\gamma_K$ can be approximated by smooth measures of the form $e^{-V(x)} \, dx$ satisfying $\nabla^2 V \geq \text{Id}$.

**Theorem (Brascamp–Lieb, 1976)**

Let $\beta \in (0, \infty)$ and $V : \mathbb{R}^n \to \mathbb{R}$ be such that $\nabla^2 V \geq \beta \text{Id}$. Then, if $d\mu(x) = e^{-V(x)} \, dx$, every smooth function $h : \mathbb{R}^n \to \mathbb{R}$ satisfies

$$\text{Var}_\mu h := \int h^2 \, d\mu - \left( \int h \, d\mu \right)^2 \leq \frac{1}{\beta} \int |\nabla h|^2 \, d\mu.$$

In particular, since each $\partial_i(u - r)$ is odd and $K$ is symmetric, we have

$$\sum_{j=1}^n \int (\partial_i \partial_j (u - r))^2 \, d\gamma_K \geq \text{Var}_{\gamma_K} (\partial_i (u - r)) = \int (\partial_i (u - r))^2 \, d\gamma_K.$$
Proof of the main theorem (continued)

Adding up, we get

\[
\int \|\nabla^2 (u - r)\|^2_{\text{HS}} \, d\gamma_K \geq \int_K |\nabla (u - r)|^2 \, d\gamma_K
\]

\[
= \int_K |\nabla u(x)|^2 - \frac{2}{n} \sum_{i=1}^{n} x_i \partial_i u(x) + \frac{|x|^2}{n^2} \, d\gamma_K(x).
\]
Proof of the main theorem (continued)

Adding up, we get

\[
\int \| \nabla^2 (u - r) \|^2_{HS} \, d\gamma_K \geq \int_K |\nabla (u - r)|^2 \, d\gamma_K \\
= \int_K |\nabla u(x)|^2 - \frac{2}{n} \sum_{i=1}^{n} x_i \partial_i u(x) + \frac{|x|^2}{n^2} \, d\gamma_K(x).
\]

Putting everything together,

\[
\int \| \nabla^2 u \|^2_{HS} + |\nabla u|^2 \, d\gamma_K \geq \int 2|\nabla u(x)|^2 + \frac{|x|^2}{n^2} + \frac{1}{n} \, d\gamma_K(x)
\]

and the proof is complete. \qed
Equality cases

The proof above in fact implies a genuinely stronger statement. There exists a function $\sigma_n : [0,1] \rightarrow \mathbb{R}$ such that $x \mapsto \sigma_n^{-1}(x)$ is strictly increasing and strictly concave such that

$$\sigma_n(\gamma_n(\lambda K + (1-\lambda)L)) \geq \lambda \sigma_n(\gamma_n(K)) + (1-\lambda) \sigma_n(\gamma_n(L))$$

holds for every symmetric convex sets $K, L$ in $\mathbb{R}^n$ and every $\lambda \in (0,1)$.

Corollary

Let $K, L$ be two symmetric convex sets in $\mathbb{R}^n$ and $\lambda \in (0,1)$ be such that

$$\gamma_n(\lambda K + (1-\lambda)L) = \lambda \gamma_n(K) + (1-\lambda) \gamma_n(L).$$

Then $K = L$.

Alexandros Eskenazis (Jussieu)
Equality cases

The proof above in fact implies a genuinely stronger statement. There exists a function $\sigma_n : [0, 1] \to \mathbb{R}$ such that $x \mapsto \sigma_n^{-1}(x)^{\frac{1}{n}}$ is strictly increasing and strictly concave such that

$$\sigma_n(\gamma_n(\lambda K + (1 - \lambda)L)) \geq \lambda\sigma_n(\gamma_n(K)) + (1 - \lambda)\sigma_n(\gamma_n(L))$$

holds for every symmetric convex sets $K, L$ in $\mathbb{R}^n$ and every $\lambda \in (0, 1)$. 
Equality cases

The proof above in fact implies a genuinely stronger statement. There exists a function \( \sigma_n : [0, 1] \to \mathbb{R} \) such that \( x \mapsto \sigma_n^{-1}(x)^{\frac{1}{n}} \) is strictly increasing and strictly concave such that

\[
\sigma_n(\gamma_n(\lambda K + (1 - \lambda)L)) \geq \lambda \sigma_n(\gamma_n(K)) + (1 - \lambda) \sigma_n(\gamma_n(L))
\]

holds for every symmetric convex sets \( K, L \) in \( \mathbb{R}^n \) and every \( \lambda \in (0, 1) \).

**Corollary**

*Let \( K, L \) be two symmetric convex sets in \( \mathbb{R}^n \) and \( \lambda \in (0, 1) \) be such that*

\[
\gamma_n\left(\lambda K + (1 - \lambda)L\right)^{\frac{1}{n}} = \lambda \gamma_n(K)^{\frac{1}{n}} + (1 - \lambda) \gamma_n(L)^{\frac{1}{n}}.
\]

*Then \( K = L \).*
An Ehrhard-type inequality for symmetric convex sets?

We are stuck with the following (purposefully vague) question.

**Question**

Fix $n \in \mathbb{N}$. Is there an "optimal" increasing function $\xi_n : [0, 1] \rightarrow \mathbb{R}$ such that for every origin symmetric convex sets $K$, $L$ in $\mathbb{R}^n$ and every $\lambda \in (0, 1)$, the inequality

$$\xi_n(\gamma_n(\lambda K + (1-\lambda)L)) \geq \lambda \xi_n(\gamma_n(K)) + (1-\lambda) \xi_n(\gamma_n(L))$$

is satisfied?

It is unclear what is the right way to interpret "optimal" here, but it should at least have nontrivial pairs $(K, L)$ of equality cases.

**Remark.** For every symmetric convex set $K$, if $\Xi_n(r) = \gamma_n(rK)$, then $\xi_n := \Xi_n^{-1}$ does not satisfy the inequality.
An Ehrhard-type inequality for symmetric convex sets?

We are stuck with the following (purposefully vague) question.

**Question**

Fix $n \in \mathbb{N}$. Is there an “optimal” increasing function $\xi_n : [0, 1] \to \mathbb{R}$ such that for every origin symmetric convex sets $K, L$ in $\mathbb{R}^n$ and every $\lambda \in (0, 1)$, the inequality

$$\xi_n(\gamma_n(\lambda K + (1 - \lambda)L)) \geq \lambda \xi_n(\gamma_n(K)) + (1 - \lambda) \xi_n(\gamma_n(L))$$

is satisfied?

It is unclear what is the right way to interpret “optimal” here, but it should at least have nontrivial pairs $(K, L)$ of equality cases.

**Remark.** For every symmetric convex set $K$, if $\Xi_n(r) = \gamma_n(rK)$, then $\xi_n := \Xi_n^{-1}$ does not satisfy the inequality.
An Ehrhard-type inequality for symmetric convex sets?

We are stuck with the following (purposefully vague) question.

**Question**

Fix $n \in \mathbb{N}$. Is there an “optimal” increasing function $\xi_n : [0, 1] \to \mathbb{R}$ such that for every origin symmetric convex sets $K, L$ in $\mathbb{R}^n$ and every $\lambda \in (0, 1)$, the inequality

$$
\xi_n(\gamma_n(\lambda K + (1 - \lambda)L)) \geq \lambda \xi_n(\gamma_n(K)) + (1 - \lambda)\xi_n(\gamma_n(L))
$$

is satisfied?

It is unclear what is the right way to interpret “optimal” here, but it should at least have nontrivial pairs $(K, L)$ of equality cases.
An Ehrhard-type inequality for symmetric convex sets?

We are stuck with the following (purposefully vague) question.

**Question**

Fix $n \in \mathbb{N}$. Is there an “optimal” increasing function $\xi_n : [0, 1] \to \mathbb{R}$ such that for every origin symmetric convex sets $K, L$ in $\mathbb{R}^n$ and every $\lambda \in (0, 1)$, the inequality

$$\xi_n\left(\gamma_n(\lambda K + (1 - \lambda)L)\right) \geq \lambda \xi_n(\gamma_n(K)) + (1 - \lambda)\xi_n(\gamma_n(L))$$

is satisfied?

It is unclear what is the right way to interpret “optimal” here, but it should at least have nontrivial pairs $(K, L)$ of equality cases.

**Remark.** For every symmetric convex set $K$, if $\Xi_n(r) = \gamma_n(rK)$, then $\xi_n := \Xi_n^{-1}$ does not satisfy the inequality.
Thank you!