Floating bodies and random polytopes.

Olivier Guédon

LAMA, Université Gustave Eiffel

May 19, 2020
Geometry of convex bodies

Let X be a random vector in \mathbb{R}^n, X_1, \ldots, X_N independent copies of X. We study

$$\text{absconv}(X_1, \ldots, X_N) = AB_1^N \subset \mathbb{R}^n$$

where A is a matrix which columns are the vectors X_i.

Olivier Guédon (LAMA, Université Gustave Eiffel)
Random polytopes

Geometry of convex bodies

Let X be a random vector in \mathbb{R}^n, X_1, \ldots, X_N independent copies of X. We study

$$\text{absconv}(X_1, \ldots, X_N) = AB_1^N \subset \mathbb{R}^n$$

where A is a matrix which columns are the vectors X_i.

1. Combinatorics: asymptotic computation as N goes to ∞ and n is fixed: of the number of vertices, facets or volume.
Let X be a random vector in \mathbb{R}^n, X_1, \ldots, X_N independent copies of X. We study

$$\text{absconv}(X_1, \ldots, X_N) = AB_1^N \subset \mathbb{R}^n$$

where A is a matrix which columns are the vectors X_i.

1. combinatorics: asymptotic computation as N goes to ∞ and n is fixed: of the number of vertices, facets or volume.

2. geometry: asymptotic behavior as $N \geq n$ et $n \to \infty$: extremal properties of the volume of the polytope or its polar.
Random polytopes

Geometry of convex bodies

Let X be a random vector in \mathbb{R}^n, X_1, \ldots, X_N independent copies of X. We study

$$\text{absconv}(X_1, \ldots, X_N) = AB_1^N \subset \mathbb{R}^n$$

where A is a matrix which columns are the vectors X_i.

1. combinatorics: asymptotic computation as N goes to ∞ and n is fixed: of the number of vertices, facets or volume.
2. geometry: asymptotic behavior as $N \geq n$ et $n \to \infty$: extremal properties of the volume of the polytope or its polar.
3. probability: geometric properties of the polytope according to the law of the random vector which generates the polytope, properties of the operator norm of A.
Random polytopes

A key result in the local theory of Banach spaces (due to Gluskin in 1981): the Banach Mazur distance between 2 such random polytopes is “extremal”: $X \sim \mathcal{N}(0, \text{Id})$, with high probability, for $N \geq 10n$

$$d(P_N, P'_N) \geq cn$$
Random polytopes

1. A key result in the local theory of Banach spaces (due to Gluskin in 1981): the Banach Mazur distance between 2 such random polytopes is "extremal": \(X \sim \mathcal{N}(0, \text{Id}) \), with high probability, for \(N \geq 10n \)

\[
d(P_N, P'_N) \geq cn
\]

2. Szarek (1990), Tikhomirov (2019). With \(N = n^3 \),

\[
d(P_N, B^n_1) \geq n^{5/9} \log^{-C}(n)
\]
Random polytopes

1. A key result in the local theory of Banach spaces (due to Gluskin in 1981): the Banach Mazur distance between 2 such random polytopes is "extremal": \(X \sim \mathcal{N}(0, \text{Id}) \), with high probability, for \(N \geq 10n \)

\[
d(P_N, P'_N) \geq cn
\]

2. Szarek (1990), Tikhomirov (2019). With \(N = n^3 \),

\[
d(P_N, B_1^n) \geq n^{5/9} \log^{-C}(n)
\]

3. Extremal properties of such random polytopes: (CFPP 2015) if \(X \) has a bounded density (by 1) then

\[
\mathbb{E} \text{Vol}(\text{absconv}(X_1, \ldots, X_N))^o
\]

is maximal when \(X \sim \mathcal{U}_{B_2^n} \).
Random matrices : $\Gamma = (X_1, \ldots, X_N)^T : \ell_2^n \rightarrow \ell_2^N$

Study of the extreme singular values of the matrix :

$$s_1(\Gamma) = \sup_{|x|_2=1} |\Gamma x|_2 = \sup_{|x|_2=1} \left(\sum_{j=1}^N \langle X_j, x \rangle^2 \right)^{1/2}$$

$$s_N(\Gamma) = \inf_{|x|_2=1} |\Gamma x|_2 = \inf_{|x|_2=1} \left(\sum_{j=1}^N \langle X_j, x \rangle^2 \right)^{1/2}$$

By duality, showing that $s_N \geq \alpha \sqrt{N}$ is equivalent to

$$\alpha \sqrt{NB_2^n} \subset AB_2^N (\subset \sqrt{NP_N})$$

LPRT (2005), LPRTV (2006) : good hypotheses on the random vector X. Net arguments. In all these arguments, they need a good bound on s_1 to get a lower bound on s_N.

Kolesnikov, Mendelson (2014)
Question

X a random vector in \mathbb{R}^n, X_1, \ldots, X_N independent copies of X.

Definition

A family of floating bodies. Let X be a symmetric random vector, for every $p \geq 1$, set $K_p(X) = \{ t \in \mathbb{R}^n, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p} \}$.

Olivier Guédon (LAMA, Université Gustave Eiffel)
Question

X a random vector in \(\mathbb{R}^n \), \(X_1, \ldots, X_N \) independent copies of X.

Define a "natural set" \(K \) associated to \(X \) such that with high probability

\[
K \subset \text{absconv}(X_1, \ldots, X_N)
\]
Floating body and geometry of the polytopes.

Question

1. Define a ”natural set” K associated to X such that with high probability

 $$K \subset \text{absconv}(X_1, \ldots, X_N)$$

2. Give some kind of precise description of K?
Floating body and geometry of the polytopes.

Question

X a random vector in \(\mathbb{R}^n \), \(X_1, \ldots, X_N \) independent copies of \(X \).

1. Define a ”natural set” \(K \) associated to \(X \) such that with high probability

\[
K \subset \text{absconv}(X_1, \ldots, X_N)
\]

2. Give some kind of precise description of \(K \)?

Definition

A family of floating bodies. Let \(X \) be a symmetric random vector, for every \(p \geq 1 \), set

\[
K_p(X) = \{ t \in \mathbb{R}^n, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p} \}
\]
I) Floating body - Examples.

Definition
A family of floating bodies. Let X be a symmetric random vector, for every $p \geq 1$, set

$$K_p(X) = \{ t \in \mathbb{R}^n, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p} \}$$

Assume X is reasonably ”nice”
I) Floating body - Examples.

Definition

A family of floating bodies. Let X be a symmetric random vector, for every $p \geq 1$, set

$$K_p(X) = \{ t \in \mathbb{R}^n, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p} \}$$

Assume X is reasonably "nice"

- For every $t \in \mathbb{R}^n$, $\langle X, t \rangle$ has moments of all order. And define

$$B(L_p(X)) = \left\{ t \in \mathbb{R}^n, (\mathbb{E}|\langle X, t \rangle|^p)^{1/p} \leq 1 \right\}$$

Then by Chebychev inequality

$$\frac{1}{e} B(L_p(X)) \subset K_p(X)$$
I) Floating body - Examples.

Definition

A family of floating bodies. Let X be a symmetric random vector, for every $p \geq 1$, set

$$K_p(X) = \{ t \in \mathbb{R}^n, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p} \}$$

Assume X is reasonably “nice”

- For every $t \in \mathbb{R}^n$, $\langle X, t \rangle$ has moments of all order. And define

$$B(L_p(X)) = \left\{ t \in \mathbb{R}^n, (\mathbb{E}|\langle X, t \rangle|^p)^{1/p} \leq 1 \right\}$$

- Assume also that there exists $D \geq 1$ such that

$$\forall q \geq 2, \forall t \in \mathbb{R}^n, \left(\mathbb{E}|\langle X, t \rangle|^{2q} \right)^{1/2q} \leq D \left(\mathbb{E}|\langle X, t \rangle|^q \right)^{1/q}$$

Then by Paley-Zygmund,

$$K_p(X) \subset 2B(L_{c_1p}(X))$$

where c_1 depends only on D.

Olivier Guédon (LAMA, Université Gustave Eiffel)

Floating bodies and random polytopes.

May 19, 2020 6 / 16
Floating body - X is reasonably "nice".

- For every $t \in \mathbb{R}^n$, $\langle X, t \rangle$ has moments of all order. And define
 \[B(L_p(X)) = \left\{ t \in \mathbb{R}^n, (\mathbb{E}|\langle X, t \rangle|^p)^{1/p} \leq 1 \right\} \]

- Assume also that there exists $D \geq 1$ such that
 \[\forall q \geq 2, \forall t \in \mathbb{R}^n, \left(\mathbb{E}|\langle X, t \rangle|^{2q} \right)^{1/2q} \leq D \left(\mathbb{E}|\langle X, t \rangle|^q \right)^{1/q} \]

Conclusion

\[\exists C_1(D) \geq 1, \forall p \geq 2, \quad \frac{1}{e} B(L_p(X)) \subset K_p(X) \subset C_1 B(L_p(X)) \]
Floating body - X is reasonnably "nice".

- For every $t \in \mathbb{R}^n$, $\langle X, t \rangle$ has moments of all order. And define
 \[
 B(L_p(X)) = \left\{ t \in \mathbb{R}^n, \left(\mathbb{E} |\langle X, t \rangle|^p \right)^{1/p} \leq 1 \right\}
 \]

- Assume also that there exists $D \geq 1$ such that
 \[
 \forall q \geq 2, \forall t \in \mathbb{R}^n, \left(\mathbb{E} |\langle X, t \rangle|^{2q} \right)^{1/2q} \leq D \left(\mathbb{E} |\langle X, t \rangle|^q \right)^{1/q}
 \]

Conclusion

\[
\exists C_1(D) \geq 1, \forall p \geq 2, \quad \frac{1}{e} B(L_p(X)) \subset K_p(X) \subset C_1 B(L_p(X)),
\]

Remark

The polar $B(L_p(X))^o$ is called the Z_p-centroid body of X

\[
Z_p(X) = B(L_p(X))^o
\]

and is well studied in the geometry of log-concave measures.
Floating body - Various examples.

Set $G \sim \mathcal{N}(0, \text{Id})$ then

$$K_p(G) \approx \frac{1}{\sqrt{p}} B_2^n$$ and $$K_p(G)^{o} \approx \sqrt{p} B_2^n$$
Floating body - Various examples.

- Set $G \sim \mathcal{N}(0, \text{Id})$ then

 $$K_p(G) \approx \frac{1}{\sqrt{p}} B_2^n \quad \text{and} \quad K_p(G)^o \approx \sqrt{p} B_2^n$$

- Set X uniformly distributed on a symmetric convex body K then

 $$K_p(X)^o \approx Z_p(X)$$

where $h_{Z_p(X)}(\theta) = \left(\mathbb{E} \langle X, \theta \rangle^p \right)^{1/p}$.
Floating body - Various examples.

- Set $G \sim \mathcal{N}(0, \text{Id})$ then

 $$K_p(G) \approx \frac{1}{\sqrt{p}} B_2^n$$

 and

 $$K_p(G)^o \approx \sqrt{p} B_2^n$$

- Set X uniformly distributed on a symmetric convex body K then

 $$K_p(X)^o \approx Z_p(X)$$

 where $h_{Z_p(X)}(\theta) = (\mathbb{E} \langle X, \theta \rangle^p)^{1/p}$.

Theorem of Montgomery-Smith (1990)

$$\mathbb{P} \left(\sum_{i=1}^{n} x_i \varepsilon_i > K_{1,2}(x, t) \right) \approx e^{-ct^2}$$

where

$$K_{1,2}(x, \sqrt{p}) = \sum_{i=1}^{p} x_i^* + \frac{1}{\sqrt{p}} \left(\sum_{i=p+1}^{n} x_i^{*2} \right)^{1/2}$$
Floating body - Various examples.

- Set $G \sim \mathcal{N}(0, \text{Id})$ then
 \[K_p(G) \approx \frac{1}{\sqrt{p}} B_2^n \quad \text{and} \quad K_p(G)^o \approx \sqrt{p} B_2^n \]

- Set X uniformly distributed on a symmetric convex body K then
 \[K_p(X)^o \approx Z_p(X) \]
 where $h_{Z_p(X)}(\theta) = (\mathbb{E}\langle X, \theta \rangle^p)^{1/p}$.

- Set $\mathcal{E} = (\varepsilon_1, \ldots, \varepsilon_n)$ where ε_i are iid Rademacher r.v. then
 \[K_p(\mathcal{E}) \approx \text{conv} \left(B_1^n \cup \frac{1}{\sqrt{p}} B_2^n \right) \quad \text{and} \quad K_p(\mathcal{E})^o \approx B_\infty^n \cap \sqrt{p} B_2^n \]
The result (GKKMR 2019).

1. Norm: $\| \cdot \|$ is a norm.

2. Small ball property: There exist $\gamma > 0$ and $\delta > 0$ such that for all $t \in \mathbb{R}^n$, $P(\langle X, t \rangle \geq \gamma \|t\|) \geq \delta$.

3. Moment assumption: For some $r > 0$ and $L > 0$, we have for all $t \in \mathbb{R}^n$, $E|\langle X, t \rangle|^r \leq L \|t\|^r$.

Theorem: Let $0 < \alpha < 1$, $p = \alpha \log(eN^n)$ and $N \geq c_0(\alpha, r, \delta, L/\gamma) n$. Therefore, with probability $\geq 1 - 2 \exp(-CN^{1-\alpha n})$, $K_0 \subset \text{absconv}(X_1, \ldots, X_N)$.
Few hypotheses on X:

1. $\| \cdot \|$ a norm

The result (GKKMR 2019).
The result (GKKMR 2019).

Few hypotheses on X:

1. $\| \cdot \|$ a norm
2. Small ball property: there exist $\gamma > 0$ and $\delta > 0$ such that

$$\forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \geq \gamma \|t\|) \geq \delta$$
The result (GKKMR 2019).

Few hypotheses on X:

1. $\| \cdot \|$ a norm
2. Small ball property: there exist $\gamma > 0$ and $\delta > 0$ such that
 \[
 \forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \geq \gamma \|t\|) \geq \delta
 \]
3. Moment assumption: for some $r > 0$ and $L > 0$, we have
 \[
 \forall t \in \mathbb{R}^n, \left(\mathbb{E}|\langle X, t \rangle|^r \right)^{1/r} \leq L \|t\|
 \]
The result (GKKMR 2019).

Few hypotheses on X :

1. $\| \cdot \|$ a norm
2. Small ball property: there exist $\gamma > 0$ and $\delta > 0$ such that

$$\forall t \in \mathbb{R}^n, \mathbb{P}(\| \langle X, t \rangle \| \geq \gamma \| t \|) \geq \delta$$

3. Moment assumption: for some $r > 0$ and $L > 0$, we have

$$\forall t \in \mathbb{R}^n, (\mathbb{E} |\langle X, t \rangle|^r)^{1/r} \leq L \| t \|$$

Theorem

Let $0 < \alpha < 1$, $p = \alpha \log \left(\frac{eN}{n} \right)$ and $N \geq c_0(\alpha, r, \delta, L/\gamma) \, n$. Therefore, with probability $\geq 1 - 2 \mathbb{E}^{\frac{C_1 N^{1-\alpha} n^\alpha)}},$

$$\frac{1}{2} K_p^o \subset \text{absconv}(X_1, \ldots, X_N)$$
Various older results

With probability $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^{\alpha})$
Various older results

With probability $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^\alpha)$

- $X = G \sim \mathcal{N}(0, \text{Id})$ then

$$c_2 \sqrt{\alpha \log \left(\frac{eN}{n}\right)} B_2^n \subset \text{absconv}(X_1, \ldots, X_N)$$
Various older results

With probability $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^\alpha)$

- $X = G \sim \mathcal{N}(0, \text{Id})$ then

$$c_2 \sqrt{\alpha \log \left(\frac{eN}{n} \right)} B_2^n \subset \text{absconv}(X_1, \ldots, X_N)$$

- (LPRT 2005) $\mathcal{E} = (\varepsilon_1, \ldots, \varepsilon_n)$ where ε_i are iid Rademacher r.v. then

$$c_2 \left(B_\infty^n \cap \sqrt{\alpha \log \left(\frac{eN}{n} \right)} B_2^n \right) \subset \text{absconv}(X_1, \ldots, X_N)$$
Various older results

With probability $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^\alpha)$

- $X = G \sim \mathcal{N}(0, \text{Id})$ then

 $c_2 \sqrt{\alpha \log \left(\frac{eN}{n} \right)} B_2^n \subset \text{absconv}(X_1, \ldots, X_N)$

- (LPRT 2005) $\mathcal{E} = (\varepsilon_1, \ldots, \varepsilon_n)$ where ε_i are iid Rademacher r.v. then

 $c_2 \left(B_\infty^n \cap \sqrt{\alpha \log \left(\frac{eN}{n} \right)} B_2^n \right) \subset \text{absconv}(X_1, \ldots, X_N)$

- (DGT 2009) X uniformly distributed on a symmetric convex body K then

 $c_2 Z_p(X) \subset \text{absconv}(X_1, \ldots, X_N)$
The case of q-stable random vector.

$X = (\xi_1, \ldots, \xi_n)$ with ξ_i iid q-stable: $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$

Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|^q \xi$ and remember that for every large enough u

$$\mathbb{P}(\xi \geq u) \approx 1/u^q$$
The case of q-stable random vector.

$X = (\xi_1, \ldots, \xi_n)$ with ξ_i iid q-stable: $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$

Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|^q \xi$ and remember that for every large enough u

$\mathbb{P}(\xi \geq u) \approx 1/u^q$

$\| \cdot \| = | \cdot |_q$ a norm
The case of q-stable random vector.

$X = (\xi_1, \ldots, \xi_n)$ with ξ_i iid q-stable: $E \exp(itX) = \exp(-|t|^q/2)$

Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|^q \xi$ and remember that for every large enough u

$$P(\xi \geq u) \approx 1/u^q$$

1. $\| \cdot \| = | \cdot |_q$ a norm
2. Small ball property: there exist $\gamma > 0$ and $\delta > 0$ such that

$$\forall t \in \mathbb{R}^n, P(|\langle X, t \rangle| \geq \gamma |t|^q) \geq \delta$$
The case of q-stable random vector.

$X = (\xi_1, \ldots, \xi_n)$ with ξ_i iid q-stable: $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$

Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|^q \xi$ and remember that for every large enough u

$$\mathbb{P}(\xi \geq u) \approx 1/u^q$$

1. $\| \cdot \| = | \cdot |_q$ a norm
2. Small ball property: there exist $\gamma > 0$ and $\delta > 0$ such that
 $$\forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \geq \gamma |t|^q) \geq \delta$$
3. Moment assumption: for $r = q/2 > 0$ there is $L > 0$ such that
 $$\forall t \in \mathbb{R}^n, (\mathbb{E}|\langle X, t \rangle|^r)^{1/r} \leq L |t|^q$$
The case of q-stable random vector.

$X = (\xi_1, \ldots, \xi_n)$ with ξ_i iid q-stable: $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$

Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|^q$ and remember that for every large enough u

$$\mathbb{P}(\xi \geq u) \approx 1/u^q$$

1. $\| \cdot \| = | \cdot |_q$ a norm
2. Small ball property: there exist $\gamma > 0$ and $\delta > 0$ such that

$$\forall t \in \mathbb{R}^n, \mathbb{P}(\|\langle X, t \rangle\| \geq \gamma |t|^q) \geq \delta$$

3. Moment assumption: for $r = q/2 > 0$ there is $L > 0$ such that

$$\forall t \in \mathbb{R}^n, (\mathbb{E}|\langle X, t \rangle|^r)^{1/r} \leq L |t|^q$$

Theorem

For all $q \geq 1$, taking $p = \alpha \log(eN/n)$, we have

$$c_2(q) \left(\frac{N}{n} \right)^{\alpha/q} B_n^q \subset K_p(X)^o \subset 2\text{absconv}(X_1, \ldots, X_N)$$
II) Stochastic domination and floating bodies.

Definition

Let X and Y be two centered random vectors in \mathbb{R}^n. We say that X dominates Y when there exist λ_1 and λ_2 such that

$$\forall t \in \mathbb{R}^n, \forall u \in \mathbb{R}, \quad P(\langle X, t \rangle \geq u) \geq \lambda_1 P(\langle Y, t \rangle \geq \lambda_2 u)$$

This gives

$$K_p(X) \subset \lambda_2 K_{p'}(Y)$$

with $p' = p - \log(1/\lambda_1)$.

This property is stable by tensorization: if x and y are symmetric r.v. such that for every $u > 0$, $P(x > u) \leq \lambda_1 P(y > \lambda_2 u)$ then $X = (x_1, \ldots, x_n)$ dominates $Y = (y_1, \ldots, y_n)$ with constants $c_1 \lambda_1$ and $c_2 \lambda_2$, where x_1, \ldots, x_n are iid copies of x and y_1, \ldots, y_n are iid copies of y.
Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i independent copies of a symmetric r.v. ξ. Assume $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \geq \gamma_0) \geq \delta_0$.

By tensorisation, for $X = (\xi_1, \ldots, \xi_n)$ and $E = (\varepsilon_1, \ldots, \varepsilon_n)$, we get that there exist λ_1, λ_2 such that for every $t \in \mathbb{R}^n$ $\forall u \in \mathbb{R}$,

$\mathbb{P}(\langle X, t \rangle \geq u) \geq \lambda_1 \mathbb{P}(\langle E, t \rangle \geq \lambda_2 u)$

In conclusion, $K^p(X) \subset \lambda_2 K^p(E)$ and $K^p(X) \supset \lambda_2^{-1} K^p(E)$ where $p' = p - \log(1/\lambda_1)$.
Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i independent copies of a symmetric r.v. ξ. Assume $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \geq \gamma_0) \geq \delta_0$. Then for every $u \in \mathbb{R}$

$$\mathbb{P}(\xi \geq u) \geq \delta_0 \mathbb{P}(\varepsilon \geq \frac{u}{\gamma_0})$$
Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i independent copies of a symmetric r.v. ξ. Assume $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \geq \gamma_0) \geq \delta_0$. Then for every $u \in \mathbb{R}$

$$\mathbb{P}(\xi \geq u) \geq \delta_0 \mathbb{P}(\varepsilon \geq \frac{u}{\gamma_0})$$

By tensorisation, for $X = (\xi_1, \ldots, \xi_n)$ and $\mathcal{E} = (\varepsilon_1, \ldots, \varepsilon_n)$, we get that there exist λ_1, λ_2 such that for every $t \in \mathbb{R}^n$

$$\forall u \in \mathbb{R}, \quad \mathbb{P}(\langle X, t \rangle \geq u) \geq \lambda_1 \mathbb{P}(\langle \mathcal{E}, t \rangle \geq \lambda_2 u)$$
Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i independent copies of a symmetric r.v. ξ. Assume $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \geq \gamma_0) \geq \delta_0$. Then for every $u \in \mathbb{R}$

$$
\mathbb{P}(\xi \geq u) \geq \delta_0 \mathbb{P}(\varepsilon \geq \frac{u}{\gamma_0})
$$

By tensorisation, for $X = (\xi_1, \ldots, \xi_n)$ and $\mathcal{E} = (\varepsilon_1, \ldots, \varepsilon_n)$, we get that there exist λ_1, λ_2 such that for every $t \in \mathbb{R}^n$

$$
\forall u \in \mathbb{R}, \quad \mathbb{P}(\langle X, t \rangle \geq u) \geq \lambda_1 \mathbb{P}(\langle \mathcal{E}, t \rangle \geq \lambda_2 u)
$$

In conclusion, $K_p(X) \subset \lambda_2 K_{p'}(\mathcal{E})$ and $K_p(X) \supset \lambda_2^{-1} K_{p'}(\mathcal{E})$ where

$$
p' = p - \log(1/\lambda_1).
$$

Theorem (GLT 2018)

Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i indep. copies of ξ. Suppose that $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \geq \gamma) \geq \delta$. Then for $N \geq c_0(\alpha, \gamma, \delta)n$, we have with proba $\geq 1 - 2 \exp(-c_1 N^{1-\alpha}n^\alpha)$,

$$
\text{absconv}(X_1, \ldots, X_N) \supset c_2 \left(B_{\infty}^n \cap \sqrt{\alpha \log \left(\frac{eN}{n}\right)} B_2^n\right)
$$
Theorem

Let \(X = (\xi_1, \ldots, \xi_n) \) be an unconditional random vector in \(\mathbb{R}^n \). Assume that there exist \(\gamma \) and \(\delta > 0 \) such that for any \(i = 1, \ldots, n \)

\[
\mathbb{P}(|\xi_i| \geq \gamma) \geq \delta
\]

then

\[
K_p(X) \subset \frac{c(\delta)}{\gamma} K_p(\mathcal{E})
\]
Theorem

Let $X = (\xi_1, \ldots, \xi_n)$ be an unconditional random vector in \mathbb{R}^n. Assume that there exist γ and $\delta > 0$ such that for any $i = 1, \ldots, n$

$$\mathbb{P}(|\xi_i| \geq \gamma) \geq \delta$$

then

$$K_p(X) \subset \frac{c(\delta)}{\gamma} K_p(\mathcal{E})$$
Stochastic domination and comparaison

Theorem

Let $X = (\xi_1, \ldots, \xi_n)$ be an unconditional random vector in \mathbb{R}^n. Assume that there exist γ and $\delta > 0$ such that for any $i = 1, \ldots, n$

$$\mathbb{P}(|\xi_i| \geq \gamma) \geq \delta$$

then

$$K_p(X) \subset \frac{c(\delta)}{\gamma} K_p(\mathcal{E})$$

Moreover if X satisfies the hypotheses of the main result then with proba $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^\alpha)$, we have

$$\frac{\gamma}{c_2(\delta)} c_2 \left(B_\infty^n \cap \sqrt{\alpha \log \left(\frac{eN}{n} \right)} B_2^n \right) \subset \text{absconv}(X_1, \ldots, X_N)$$
Proof

Set $\Gamma = (X_1, \ldots, X_N)^*$ the matrix whose rows are X_1, \ldots, X_N. We need to prove that

$$\mathbb{P} \left(\inf_{t \in \partial K^p(X)} |\Gamma t|_\infty \geq 1/2 \right) \geq 1 - 2 \exp(-c_1 N^{1-\alpha} n^\alpha)$$

We define the set

$$\mathcal{F} = \{ f(\cdot) = 1_{|\langle \cdot, u \rangle| \geq 1/2}, \quad u \in \partial K_p \}$$

in such a way that

$$\frac{1}{N} \sum_{j=1}^{N} f(X_j) = \# \{ j, |\langle X_j, u \rangle| \geq 1/2 \}$$
Key tool - Concentration inequality

Theorem (Talagrand 1996)

Let \mathcal{F} be a class of functions taking values in $\{0, 1\}$ such that $VC(\mathcal{F}) \leq d$ and $\sup_{f \in \mathcal{F}} E f^2 = \sigma^2$. The for every $x > 0$,

$$
\mathbb{P} \left(\sup_{f \in \mathcal{F}} \left| \frac{1}{N} \sum_{j=1}^{N} f(X_j) - E f \right| \geq R + x \right) \leq \exp \left(-N \frac{x^2/2}{\sigma^2 + 2R + x/3} \right)
$$

where $R \simeq \frac{d}{N} \log\left(\frac{c}{\sigma^2} \right) + \sigma \sqrt{\frac{d}{N} \log\left(\frac{c}{\sigma^2} \right)}$.

In our case, we have

$$
\mathcal{F} = \{ f(\cdot) = 1_{|\langle \cdot, u \rangle| \geq 1/2}, \quad u \in \partial K_p \}
$$

so that $VC(\mathcal{F}) \leq 10(n + 1)$