1. Prove that the zeros of the polynomial \(P(z) = z^7 + 7z^4 + 4z + 1 \) lie inside the disk of radius 2 centered at the origin.

2. Let \(A \) and \(B \) be \(2 \times 2 \) matrices with real entries satisfying \((AB - BA)^n = I_2\) for some positive integer \(n \). Prove that \(n \) is even and \((AB - BA)^4 = I_2\).

3. There are given \(2n + 1 \) real numbers, \(n \geq 1 \), with the property that whenever one of them is removed, the remaining \(2n \) can be split into two sets of \(n \) elements that have the same sum of elements. Prove that all the numbers are equal.

4. Let \(A, B \) be \(2 \times 2 \) matrices with integer entries, such that \(AB = BA \) and \(\det B = 1 \). Prove that if \(\det (A^3 + B^3) = 1 \), then \(A^2 = 0 \).

5. Let \(p \) be a prime integer. Prove that the determinant of the matrix
\[
\begin{pmatrix}
x & y & z \\
x^p & y^p & z^p \\
x^{p^2} & y^{p^2} & z^{p^2}
\end{pmatrix}
\]
is congruent modulo \(p \) to a product of polynomials of the form \(ax + by + cz \), where \(a, b, c \) are integers. (We say two integer polynomials are congruent modulo \(p \) if corresponding coefficients are congruent modulo \(p \).)

6. Find a nonzero polynomial \(P(x, y) \) such that \(P([a], [2a]) = 0 \) for all real numbers \(a \). (Note: \([v] \) is the greatest integer less than or equal to \(v \).)

7. Show that the curve \(x^3 + 3xy + y^3 = 1 \) contains only one set of three distinct points, \(A, B, \) and \(C \), which are vertices of an equilateral triangle, and find its area.