1. Let \(X_1, \ldots, X_n, \ldots \) be independent Poisson random variables with \(\mathbb{E} X_n = \lambda_n \). Let \(S_n = X_1 + \ldots + X_n \). Show that if \(\sum_{n=1}^\infty \lambda_n = \infty \), then \(\frac{S_n}{\mathbb{E} S_n} \to 1 \) almost surely.

2. Let \(A_n \) be a sequence of independent events with \(P(A_n) < 1 \) for all \(n \). Show that \(P(\bigcup A_n) = 1 \) implies \(P(A_n \text{ i.o.}) = 1 \).

3. Given a sequence of numbers \(p_n \in [0, 1] \), let \(X_1, \ldots, X_n, \ldots \) be independent random variables with \(P(X_n = 1) = p_n \) and \(P(X_n = 0) = 1 - p_n \). Show that
 a) \(X_n \to 0 \) in probability if and only if \(p_n \to 0 \);
 b) \(X_n \to 0 \) almost surely if and only if \(\sum p_n < \infty \).

4. Let \(X_0 \) be a random vector in \(\mathbb{R}^2 \) taking the value \((1, 0) \) with probability 1. Define inductively \(X_{n+1} \) as a random vector uniformly distributed in the disc of radius \(|X_n| \) centered at the origin. Prove that \(\frac{\log |X_n|}{n} \to c \) almost surely, and find the value of \(c \).

5. Prove the Stirling’s formula, that is,
 \[n! = (1 + o(1)) \sqrt{2\pi n} n^ne^{-n}, \]
as \(n \to \infty \).

6. Let \(X_1, \ldots \) be a sequence of i.i.d. Poisson random variables with \(\lambda = 1 \), and let \(S_n = X_1 + \ldots + X_n \). Show that
 \[\sqrt{2\pi n} \cdot P(S_n = k) \to e^{-\frac{k^2}{2}}, \]
where \(\frac{k-n}{\sqrt{n}} \to x \).

7. Show that if \(F_n \to^w F \), and \(F \) is continuous, then \(\sup_x |F_n(x) - F(x)| \to 0 \), as \(n \to \infty \).

8. Show that if \(\varphi(t) \) is a characteristic function, then \(\Re \varphi(t) \) and \(|\varphi(t)|^2 \) are also characteristic functions.
9. Show that if the characteristic function of a random variable X takes only real values, then X and $-X$ are identically distributed.

10. Let random variable X have a density $f(x) = \frac{1}{\pi(1+x^2)}$ on \mathbb{R}.
 a) Find the characteristic function of X.
 b) Let $X_1, X_2, ...$ be independent copies of X and let $S_n = X_1 + ... + X_n$. Show that $\frac{S_n}{n}$ has the same distribution as X_1.