The smallest singular value of inhomogeneous random matrices and efficient net estimates

Galyna V. Livshyts

Georgia Institute of Technology

BIRS IMAG, Granada, Spain
June 2023

Question

a) Pick a large integer, say, $n=1000000$. Flip a fair die n^{2} times.

Fill an $n \times n$ matrix with the outcomes. How likely is this matrix to be invertible?
$\left[\begin{array}{llllll}1 & 2 & 6 & 4 & 2 & 5 \\ 3 & 1 & 5 & 3 & 3 & 6 \\ 2 & 3 & 6 & 5 & 1 & 1 \\ 1 & 3 & 2 & 6 & 2 & 5 \\ 4 & 3 & 6 & 1 & 4 & 2 \\ 2 & 3 & 3 & 6 & 4 & 5\end{array}\right]$
a) Pick a large integer, say, $n=1000000$. Flip a fair die n^{2} times. Fill an $n \times n$ matrix with the outcomes. How likely is this matrix to be invertible?
$\left[\begin{array}{llllll}1 & 2 & 6 & 4 & 2 & 5 \\ 3 & 1 & 5 & 3 & 3 & 6 \\ 2 & 3 & 6 & 5 & 1 & 1 \\ 1 & 3 & 2 & 6 & 2 & 5 \\ 4 & 3 & 6 & 1 & 4 & 2 \\ 2 & 3 & 3 & 6 & 4 & 5\end{array}\right]$
b) And what if now we do not roll the same die every time, but rather use different dice to determine different entries?

Notation and Preliminaries

- The Hilbert-Schmidt norm of a matrix $A=\left(a_{i j}\right)_{i j}$ is $\|A\|_{H S}=\sqrt{\sum_{i, j} a_{i j}^{2}}$;
- Singular values of A are the axi of the ellipsoid $A B_{2}^{n}$, denoted $\sigma_{1}(A) \geq \ldots \geq \sigma_{n}(A)$;
- The operator norm $\|A\|=\sup _{x \in \mathbb{S}^{n-1}}|A x|=\sigma_{1}(A)$;
- The smallest singular value $\sigma_{n}(A)=\inf _{x \in \mathbb{S}^{n-1}}|A x|$;
- A random variable ξ is anti-concentrated if $\sup _{z \in \mathbb{R}} P(|\xi-z|<1)<b \in[0,1)$.

- Recall that for any $\epsilon>0$ there exists a Euclidean ϵ-net covering the n-dimensional ball B_{2}^{n} of size $\left(\frac{3}{\epsilon}\right)^{n}$.

Question: how likely is a random $n \times n$ matrix A to be invertible?

A harder question: how likely is the smallest singular value $\sigma_{n}(A)=\inf _{x \in \mathbb{S}^{n-1}}|A x|$ to be bigger than $?$

A is an $n \times n$ Gaussian, with i.i.d. entries $a_{i j} \sim N(0,1)$

$$
\sigma_{n}(A) \approx \frac{1}{\sqrt{n}}
$$

Furthermore, for every $\epsilon \in(0,1)$,

$$
P\left(\sigma_{n}(A) \leq \frac{\epsilon}{\sqrt{n}}\right) \leq \epsilon
$$

(Edelman, Szareck independently in 1990/1991)

A is $n \times n$ matrix with i.i.d. Bernoulli ± 1 entries

Conjecture (Erdos) 1950s: $P\left(\sigma_{n}(A)=0\right)=C n^{2} \cdot 2^{-n}$
(when a pair of columns or rows coincide, and rarely elsewhere)

- Kolmos 60s: $P\left(\sigma_{n}(A)=0\right)=o(1)$;
- Khan, Kolmos, Szemeredi 1995: $P\left(\sigma_{n}(A)=0\right) \leq 0.99^{n}$;
- Tao, Vu 2006, 2007: $P\left(\sigma_{n}(A)=0\right) \leq 0.75^{n}$;
- Bourgain, Vu, Wood, 2010: $P\left(\sigma_{n}(A)=0\right) \leq \sqrt{2}^{-n}$;
- Tikhomirov, 2019: $P\left(\sigma_{n}(A)=0\right) \leq(0.5+o(1))^{n}$!

A random variable ξ is sub-Gaussian if for all $t>0$,

$$
P(|\xi| \geq t) \leq e^{-K t^{2}}
$$

A is $n \times n$, has entries $a_{i j}$
Rudelson, Vershynin 2008:

$$
P\left(\sigma_{n}(A) \leq \frac{\epsilon}{\sqrt{n}}\right) \leq C \epsilon+e^{-c n}
$$

Note: this combines the behavior of Gaussian matrices and the Bernoulli ± 1 matrices.
A is $n \times n$, has entries $a_{i j}$ uniformly anti-concentrated,
Rebrova, Tikhomirov 2016:

$$
P\left(\sigma_{n}(A) \leq \frac{\epsilon}{\sqrt{n}}\right) \leq C \epsilon+e^{-c n}
$$

A is $n \times n$, has independent UAC entries, $\mathbb{E}\|A\|_{H S}^{2} \leq K n^{2}$,
L, 2018+

$$
P\left(\sigma_{n}(A) \leq \frac{\epsilon}{\sqrt{n}}\right) \leq C \epsilon+e^{-c n} .
$$

ivid. Columns, meanzore variance one

Remarks

- In fact, it is enough to assume for any $p>0$,

$$
\sum_{i=1}^{n}\left(\mathbb{E}\left|A e_{i}\right|^{2 p}\right)^{\frac{1}{p}} \leq K n^{2} ; \quad \sum_{i=1}^{n}\left(\mathbb{E}\left|A^{T} e_{i}\right|^{2 p}\right)^{\frac{1}{p}} \leq K n^{2}
$$

Note: in principle, all entries may have infinite second moment, but distribution has to depend on n.

- It is much easier to prove this result, and to drop the i.i.d. rows assumption if $e^{-c n}$ is replaced by $\frac{c}{\sqrt{n}}$.

Bai, Cook, Edelman, Gordon, Guedon, Huang, Koltchinckii, Latala, Litvak, Lytova, Meckes, Meckes, Mendelson, Pajor, Paouris, Rebrova, Rudelson, O'Rourke, Szarek, Tao, Tatarko, Tomczak-Jaegermann, Tikhomirov, Van Handel, Vershynin, Vu, Yaskov, Yin, Youssef,...

Theorem (L, Tikhomirov, Vershynin 2019+)

Let A be an $n \times n$ random matrix with

- independent entries $a_{i j}$
- $\mathbb{E}\|A\|_{H S}^{2} \leq K n^{2}$
- $a_{i j}$ are UAC, that is $\sup _{z \in \mathbb{R}} P\left(\left|a_{i j}-z\right|<1\right)<b \in(0,1)$

Then for every $\epsilon \in(0,1)$,

$$
P\left(\sigma_{n}(A)<\frac{\epsilon}{\sqrt{n}}\right) \leq C \epsilon+e^{-c n}
$$

where C and c are absolute constants which depend (polynomially) only on K and b.

Question: what if A is an $N \times n$ random matrix with $N \geq n$?
Litvak, Pajor, Rudelson, Tomczak-Jaegermann, 2005
$N \geq n+\frac{n}{C \log n}$, strong assumptions: $P\left(\sigma_{n}(A) \leq C_{1} \sqrt{N}\right) \leq e^{-C_{2} N}$.

Rudelson, Vershynin, 2009
$N \geq n, a_{i j}$ i.i.d. sub-Gaussian, $\mathbb{E} a_{i j}=0, \mathbb{E} a_{i j}^{2}=1$. Then for any $\epsilon \in(0,1)$,

$$
P\left(\sigma_{n}(A) \leq \epsilon(\sqrt{N+1}-\sqrt{n})\right) \leq C_{1} \epsilon^{N-n+1}+e^{-C_{2} N}
$$

Tao, Vu, 2010
Replaced sub-Gaussian with $\mathbb{E} a_{i j}^{C_{1}} \leq 1$, but $N \in\left[n, n+C_{2}\right]$

Vershynin, 2011

Replaced sub-Gaussian with $\mathbb{E} a_{i j}^{4}<\infty$ but

$$
P\left(\sigma_{n}(A) \leq \epsilon(\sqrt{N+1}-\sqrt{n})\right) \leq \delta(\epsilon) \rightarrow_{\epsilon \rightarrow 0} 0 .
$$

Theorem (L. 2018+)

Let $N \geq n \geq 1$ be integers. Let A be an $N \times n$ random matrix with

- independent UAC entries $a_{i j}$
- i.i.d. rows
- $\mathbb{E}_{i j}=0$
- $\mathbb{E} a_{i j}^{2}=1$

Then for every $\epsilon>0$,

$$
P\left(\sigma_{n}(A)<\epsilon(\sqrt{N+1}-\sqrt{n})\right) \leq(C \epsilon \log 1 / \epsilon)^{N-n+1}+e^{-c N}
$$

where C and c are absolute constants which depend (polynomially) only on the concentration function bounds.

Remark: a more general result in fact follows...

Proposition 1 (L. 2018+) tall case with dependent columns

Suppose A is an $N \times n$ random matrix with independent rows, $\mathbb{E}\|A\|_{H S}^{2} \leq K N n$, $N \geq C_{0} n$, and assume for every $x \in \mathbb{S}^{n-1}$,

$$
\sup _{y \in \mathbb{R}} P\left(\left|\left\langle A^{T} e_{i}, x\right\rangle-y\right| \leq 1\right) \leq b \in(0,1)
$$

Then

$$
\mathbb{E} \sigma_{n}(A) \geq c \sqrt{N}
$$

Proposition 2 (L. 2018+) tall case with low moments

Fix $p>0$. Suppose $N \geq C_{0}^{\prime} n, A$ is an $N \times n$ random matrix with independent UAC entries. Suppose

$$
\sum_{i=1}^{n}\left(\mathbb{E}\left|A e_{i}\right|^{2 p}\right)^{\frac{1}{p}} \leq K n N e^{\frac{c_{0} N}{n}}
$$

Then

$$
P\left(\sigma_{n} \leq C_{1} \sqrt{N}\right) \leq e^{-C_{2} \min (p, 1) N}
$$

$$
\text { Goal: } P\left(\sigma_{n}(A) \leq 2 \circlearrowleft\right) \leq \diamond \text {. }
$$

Discretize \mathbb{S}^{n-1} :

Suppose we find a small finite set $\mathcal{N} \subset \mathbb{R}^{n}$ with

- $\# \mathcal{N} \leq \boldsymbol{\oplus}$;
- $\forall x \in \mathbb{S}^{n-1} \exists y \in \mathcal{N}:|A(x-y)| \leq \Omega$ with probability $\geq 1-\boldsymbol{\mu}$.

Then we write:

$$
\begin{aligned}
& P\left(\sigma_{n}(A) \leq \varnothing\right)=P\left(\inf _{x \in \mathbb{S}^{n-1}}|A x| \leq \varnothing\right) \leq \\
& P\left(\inf _{y \in \mathcal{N}}|A y| \leq 20\right)+\boldsymbol{\%}=P(\exists y \in \mathcal{N}:|A x| \leq 20)+\boldsymbol{\infty} \leq \\
& \boldsymbol{\phi} \cdot \sup _{y \in \mathcal{N}} P(|A y| \leq 2 \mathcal{S})+\boldsymbol{\phi} \text {. }
\end{aligned}
$$

So IF we know that for each $y, P(|A y| \leq 2 \Omega) \leq \frac{\Delta-\infty}{\phi}$, we are done!

The net result

Theorem (L. 2018+) - Lite version

There exists a deterministic net $\mathcal{N} \subset \frac{3}{2} B_{2}^{n} \backslash \frac{1}{2} B_{2}^{n}$ of cardinality 1000^{n} such that for any integer N and any $N \times n$ random matrix A with independent columns, with probability at least $1-e^{-5 n}$, for every $x \in \mathbb{S}^{n-1}$ there exists $y \in \mathcal{N}$ such that

$$
|A(x-y)| \leq \frac{100}{\sqrt{n}} \sqrt{\mathbb{E}\|A\|_{H S}^{2}} .
$$

Folklore: A has sub-gaussian independent entries $a_{i j}, \mathbb{E} a_{i j}=0, \mathbb{E} a_{i j}^{2}=$ const.

- Let \mathcal{N} be the standard ε-net, i.e. such that

$$
\mathbb{S}^{n-1} \subset \cup_{x \in \mathcal{N}}\left(x+\varepsilon B_{2}^{n}\right)
$$

and $\# \mathcal{N} \leq\left(\frac{3}{\varepsilon}\right)^{n}$.

- Then we can estimate $|A(x-y)| \leq\|A\| \varepsilon \leq C \varepsilon \cdot \frac{\|A\| \text { Hs }}{\sqrt{n}}$?
- Recall, for any matrix $A: \frac{1}{\sqrt{n}}\|A\|_{H S} \leq\|A\| \leq\|A\|_{H S}$.
- But specifically for sub-gaussian mean zero variance 1 case,

$$
\begin{equation*}
P\left(\|A\| \geq \frac{100}{\sqrt{n}} \sqrt{\mathbb{E}\|A\|_{H S}^{2}}\right) \leq e^{-5 n} \tag{1}
\end{equation*}
$$

- Without strong assumptions, (1) is not true.

Rebrova, Tikhomirov (2016) proved this Theorem assuming i.i.d. UAC entries $a_{i j}$, with $\mathbb{E} a_{i j}=0, \mathbb{E} a_{i j}^{2}=$ const, and $N=n$.

Guedon, Litvak, Tatarko (2019) extended the result of Rebrova and Tikhomirov in the case of arbitrary n, N, and replaced i.i.d. entries with i.i.d. columns.

- Advantage: the Theorem only assumes independence of columns, and no other structural assumptions!
- In particular, allowing dependent columns is crucial for the proof of the arbitrary aspect ratio result.
- Not requiring mean zero is another cool feature.

Step 1: randomized rounding and comparison via Hilbert-Schmidt

Randomized rounding (Raghavan-Tompson 1987, Beck 1987, Kannan-Vempala 1997, Srinivasan 1999, Alon-Klartag 2017, Klartag-L 2018+, L 2018+, Tikhomirov 2019+,...)

Definition

For $\xi \in \mathbb{S}^{n-1}$, write each $\xi_{i}=\frac{\epsilon}{\sqrt{n}}\left(k_{i}+p_{i}\right)$ for $k_{i} \in \mathbb{Z}$ and $p_{i} \in[0,1)$. Consider a random vector $\eta^{\xi} \in(\epsilon / \sqrt{n}) \mathbb{Z}^{n}$:

$$
\eta_{i}^{\xi}= \begin{cases}\frac{\epsilon}{\sqrt{n}} k_{i}, & \text { with probability } 1-p_{i} \\ \frac{\epsilon}{\sqrt{n}}\left(k_{i}+1\right), & \text { with probability } p_{i}\end{cases}
$$

Step 1: randomized rounding and comparison via Hilbert-Schmidt

- $\mathbb{S}^{n-1} \subset \bigcup_{j=1}^{(100 / \epsilon)^{n}}\left(x_{j}+\frac{\epsilon}{\sqrt{n}} B_{\infty}^{n}\right)$.
possible
values of

$$
\leq\left(\frac{100}{\varepsilon}\right)^{n} \underset{\substack{\text { larice } \\ \text { points }}}{ }
$$

- Therefore, there is a set \mathcal{N} such that for all $\xi \in \mathbb{S}^{n-1}$, we have $\eta^{\xi} \in \mathcal{N}$, and $\# \mathcal{N} \leq\left(\frac{100}{\epsilon}\right)^{n}$;
- We have $\left\|\xi-\eta^{\xi}\right\|_{\infty} \leq \frac{\epsilon}{\sqrt{n}}$ and $\mathbb{E} \eta^{\xi}=\xi$;
- Hence, using the fact that $\mathbb{E}\left(\eta^{\xi}-\xi\right)=0$, we get:

$$
\mathbb{E}\left|\left\langle\eta^{\xi}-\xi, \theta\right\rangle\right|^{2} \leq \frac{\epsilon^{2}|\theta|^{2}}{n}
$$

Step 1: randomized rounding and comparison via Hilbert-Schmidt

Lemma 1 (comparison via Hilbert-Schmidt)

There exists a collection of points \mathcal{F} with $\# \mathcal{F} \leq\left(\frac{C}{\epsilon}\right)^{n-1}$ such that for any (deterministic) matrix $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$, for every $\xi \in \mathbb{S}^{n-1}$ there exists an $\eta \in \mathcal{F}$ satisfying

$$
|A(\eta-\xi)| \leq \frac{\epsilon}{\sqrt{n}}\|A\|_{H S}
$$

Proof.

- Recall: $|A x|^{2}=\sum_{i=1}^{N}\left\langle A^{T} e_{i}, x\right\rangle^{2}$, where $A^{T} e_{i}$ are the rows of A;
- By ($(\Omega), \mathbb{E}_{\eta}\left|\left\langle\eta^{\xi}-\xi, A^{T} e_{i}\right\rangle\right|^{2} \leq C \frac{\epsilon^{2}\left|A^{T} e_{i}\right|^{2}}{n}$;

- Summing up, we get

$$
\mathbb{E}_{\eta}\left|A\left(\eta^{\xi}-\xi\right)\right|^{2}=\mathbb{E}_{\eta} \sum_{i=1}^{N}\left\langle A^{T} e_{i}, \eta^{\xi}-\xi\right\rangle^{2} \leq\left(C^{\prime} \frac{\epsilon}{\sqrt{n}}\|A\|_{H S}\right)^{2}
$$

- If $P($ find a red ball in a box $) \geq 0.1$ then there exists a red ball in a box.

Remark

$$
P\left(\|A\|_{H S}^{2} \geq 10 \mathbb{E}\|A\|_{H S}^{2}\right) \leq 0.1
$$

Thus Lemma 1 implies the Theorem with probability 0.9 rather than $1-e^{-5 n}$. Not good:(

Idea of Rebrova and Tikhomirov, 2016: cover with parallelepipeds and not just cubes!

Admissible set of parallelepipeds

- For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ with $\alpha_{i}>0$, we fix the parallelepiped

$$
P_{\alpha}=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right| \leq \alpha_{i}\right\}
$$

- For $\kappa>1$, denote $\Omega_{\kappa}=\left\{\alpha \in \mathbb{R}^{n}: \alpha_{i} \in[0,1], \prod_{i=1}^{n} \alpha_{i}>\kappa^{-n}\right\}$.
- Note: if $\alpha \in \Omega_{\kappa}$ then $P_{\alpha} \geq(0.5 \kappa)^{-n}$ - hence the covering is not too big.

Lemma 2 (comparison via parallelepipeds)

Pick any $\alpha \in \Omega_{\kappa}$. Let A be any $N \times n$ matrix. There exists a net \mathcal{F}_{α} with $\# \mathcal{F}_{\alpha} \leq\left(\frac{100 \kappa}{\epsilon}\right)^{n}$ such that for every $\xi \in \mathbb{S}^{n-1}$ there exists an $\eta \in \mathcal{F}_{\alpha}$ satisfying

$$
|A(\eta-\xi)| \leq \frac{\epsilon}{\sqrt{n}} \sqrt{\sum_{i=1}^{n} \alpha_{i}^{2}\left|A e_{i}\right|^{2}}
$$

Step 3: \mathcal{B}_{κ} and nets on nets

Key definition: for any matrix A

$$
\mathcal{B}_{\kappa}(A):=\min _{\alpha_{i} \in[0,1], \prod_{i=1}^{n} \alpha_{i} \geq \kappa^{-n}} \sum_{i=1}^{n} \alpha_{i}^{2}\left|A e_{i}\right|^{2}
$$

Key definition: for any matrix A

Corollary of Lemma 2

Let A be any $N \times n$ matrix. There exists a small enough net \mathcal{F} such that for every $\xi \in \mathbb{S}^{n-1}$ there exists an $\eta \in \mathcal{F}$ satisfying

$$
|A(\eta-\xi)| \leq \frac{\epsilon}{\sqrt{n}} \sqrt{\mathcal{B}_{\kappa}(A)}
$$

Key definition: for any matrix A

Corollary of Lemma 2

Let A be any $N \times n$ matrix. There exists a small enough net \mathcal{F} such that for every $\xi \in \mathbb{S}^{n-1}$ there exists an $\eta \in \mathcal{F}$ satisfying

$$
|A(\eta-\xi)| \leq \frac{\epsilon}{\sqrt{n}} \sqrt{\mathcal{B}_{\kappa}(A)}
$$

But the net depends on the matrix! Not good:(

Way out: discretize the admissible set Ω_{κ}.

The "nets on nets" Lemma

There exists a collection $\mathcal{F} \subset \Omega_{\kappa^{2}}$ of cardinality 30^{n} such that for any $\alpha \in \Omega_{\kappa}$ there exists a $\beta \in \mathcal{F}$ so that for all $i=1, \ldots, n$ we have $\alpha_{i}^{2} \geq \beta_{i}^{2}$.
In particular, for any $N \times n$ matrix A, we have

$$
\mathcal{B}_{\kappa}(A) \geq \min _{\beta \in \mathcal{F}} \sum_{i=1}^{n} \beta_{i}^{2}\left|A e_{i}\right|^{2}
$$

Theorem about deterministic matrices

There exists a deterministic net \mathcal{N} of cardinality 1000^{n} such that for any integer N and any $N \times n$ deterministic matrix A, for every $x \in \mathbb{S}^{n-1}$ there exists $y \in \mathcal{N}$ such that

$$
|A(x-y)| \leq \frac{100}{\sqrt{n}} \sqrt{\mathcal{B}_{10}(A)}
$$

This reduces the proof of the Theorem to estimating the large deviation of $\mathcal{B}_{\kappa}(A)$ when A is a random matrix coming from an appropriate model.

Recall: $\mathcal{B}_{\kappa}(A):=\min _{\alpha_{i} \in[0,1],} \prod_{i=1}^{n} \alpha_{i} \geq \kappa^{-n} \sum_{i=1}^{n} \alpha_{i}^{2}\left|A e_{i}\right|^{2}$.

Lemma

Let A be a random matrix with independent columns. Pick any $\kappa>1$. Then

$$
P\left(B_{\kappa}(A) \geq 10 \mathbb{E}\|A\|_{H S}^{2}\right) \leq(C \kappa)^{-2 n} .
$$

Recall: $\mathcal{B}_{\kappa}(A):=\min _{\alpha_{i} \in[0,1],} \prod_{i=1}^{n} \alpha_{i} \geq \kappa^{-n} \sum_{i=1}^{n} \alpha_{i}^{2}\left|A e_{i}\right|^{2}$.

Lemma

Let A be a random matrix with independent columns. Pick any $\kappa>1$. Then

$$
P\left(B_{\kappa}(A) \geq 10 \mathbb{E}\|A\|_{H S}^{2}\right) \leq(C \kappa)^{-2 n} .
$$

Theorem follows now!

Recall: $\mathcal{B}_{\kappa}(A):=\min _{\alpha_{i} \in[0,1], \prod_{i=1}^{n} \alpha_{i} \geq \kappa^{-n}} \sum_{i=1}^{n} \alpha_{i}^{2}\left|A e_{i}\right|^{2}$.

Lemma

Let A be a random matrix with independent columns. Pick any $\kappa>1$. Then

$$
P\left(B_{\kappa}(A) \geq 10 \mathbb{E}\|A\|_{H S}^{2}\right) \leq(C \kappa)^{-2 n}
$$

Theorem follows now!

Small Question:

Could the above estimate be improved if we consider

$$
P\left(B_{\kappa}(A) \geq t \cdot \mathbb{E}\|A\|_{H S}^{2}\right) \leq ?, t \rightarrow \infty
$$

If yes, then one could potentially remove the extra $\left(\log \frac{1}{\epsilon}\right)^{n}$ factor in the "tall" theorem.

Lemma

Let A be a random matrix with independent columns. Pick any $\kappa>1$. Then

$$
P\left(B_{\kappa}(A) \geq 10 \mathbb{E}\|A\|_{H S}^{2}\right) \leq(C \kappa)^{-2 n}
$$

Proof.

- Denote $Y_{i}=\left|A e_{i}\right|$. If $B_{\kappa}(A) \geq 10 \sum_{i=1}^{n} \mathbb{E} Y_{i}^{2}$, then for any collection $\alpha_{1}, \ldots, \alpha_{n} \in[0,1]$, either

$$
\sum_{i=1}^{n} \alpha_{i}^{2} Y_{i}^{2} \geq 10 \sum_{i=1}^{n} \mathbb{E} Y_{i}^{2}
$$

or

$$
\prod_{i=1}^{n} \alpha_{i}<\kappa^{-n}
$$

- Consider a collection of random variables $\alpha_{i}^{2}=\min \left(1, \frac{\mathbb{E} Y_{i}^{2}}{Y_{i}^{2}}\right)$.

Proof.

- We estimate

$$
\begin{gathered}
P\left(B_{\kappa}(A) \geq 10 \mathbb{E}\|A\|_{H S}^{2}\right) \leq \\
P\left(\sum_{i=1}^{n} \min \left(1, \frac{\mathbb{E} Y_{i}^{2}}{Y_{i}^{2}}\right) Y_{i}^{2} \geq 10 \mathbb{E}\|A\|_{H S}^{2}\right)+ \\
P\left(\prod_{i=1}^{n} \min \left(1, \frac{\mathbb{E} Y_{i}^{2}}{Y_{i}^{2}}\right)<\kappa^{-2 n}\right)=: P_{1}+P_{2}
\end{gathered}
$$

- $P_{1}=0$.
- By Markov's inequality, $P_{2} \leq(C \kappa)^{-2 n}$.

Summary: the non-lite version of the net theorem

Theorem (NON-lite)

Fix $n \in \mathbb{N}$. Consider any $S \subset \mathbb{R}^{n}$. Pick any $\gamma \in(1, \sqrt{n}), \epsilon \in\left(0, \frac{1}{20 \gamma}\right), \kappa>1$, $p>0$ and $s>0$.
There exists a (deterministic) net $\mathcal{N} \subset S+4 \epsilon \gamma B_{2}^{n}$, with

$$
\# \mathcal{N} \leq \begin{cases}N\left(S, \epsilon B_{2}^{n}\right) \cdot\left(C_{1} \gamma\right)^{\frac{C_{2} n}{\gamma^{0.08}}}, & \text { if } \log \kappa \leq \frac{\log 2}{\gamma^{0.09}} \\ N\left(S, \epsilon B_{2}^{n}\right) \cdot(C \kappa \log \kappa)^{n}, & \text { if } \log \kappa \geq \frac{\log 2}{\gamma^{0.09}}\end{cases}
$$

such that for every $N \in \mathbb{N}$ and every random $N \times n$ matrix A with independent columns, with probability at least

$$
1-\kappa^{-2 p n}\left(1+\frac{1}{s^{p}}\right)^{n}
$$

for every $x \in S$ there exists $y \in \mathcal{N}$ such that

$$
|A(x-y)| \leq C_{3} \frac{\epsilon \gamma \sqrt{s}}{\sqrt{n}} \sqrt{\sum_{i=1}^{n}\left(\mathbb{E}\left|A e_{i}\right|^{2 p}\right)^{\frac{1}{p}}}
$$

Here C, C_{1}, C_{2}, C_{3} are absolute constants. γ is the "sparsity" parameter

Theorem about distances (L, Tikhomirov, Vershynin, 2019+)

Let an $n \times n A$ have independent UAC entries and $\mathbb{E}\|A\|_{H S}^{2} \leq K n^{2}$. Denote

$$
H_{j}=\operatorname{span}\left\{A e_{i}: i \neq j, i=1, \ldots, n\right\} ;
$$

Take any $j \leq n$ such that $\mathbb{E}\left|A e_{j}\right|^{2} \leq r n^{2}$. Then

$$
P\left(\operatorname{dist}\left(A_{j}, H_{j}\right) \leq \varepsilon\right) \leq C \varepsilon+2 e^{-c n}, \quad \varepsilon \geq 0
$$

Theorem (Fernandez, L, Tatarko, TBD) - ongoing

The analogous result is also true for inhomogeneous matrices with arbitrary aspect ratio.

Esseen's Lemma

Given a variable ξ with the characteristic function $\varphi(\cdot)=\mathbb{E} \exp (2 \pi \mathbf{i} \xi \cdot)$,

$$
P(|\xi|<t) \leq C \int_{-1}^{1}\left|\varphi\left(\frac{s}{t}\right)\right| d s, \quad t>0
$$

where $C>0$ is an absolute constant.

RLCD - definition

For a random vector X in \mathbb{R}^{n}, a (deterministic) vector v in \mathbb{R}^{n}, and parameters $L>0, u \in(0,1)$, define

$$
R L C D_{L, u}^{X}(v):=\inf \left\{\theta>0: \mathbb{E} \operatorname{dist}^{2}\left(\theta v \star \bar{X}, \mathbb{Z}^{n}\right)<\min \left(u|\theta v|^{2}, L^{2}\right)\right\}
$$

Here by \star we denote the Schur product

$$
v \star X:=\left(v_{1} X_{1}, \ldots, v_{n} X_{n}\right)
$$

Note: Rudelson-Vershynin previously defined LCD, a parameter which worked well to study the i.i.d. case.

Geometric meaning of RLCD

$R L C D^{X}(v)$ is roughly how much the X-associated lattice has to be scaled down to get close to v.

Anticoncentration via RLCD

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector with independent coordinates satisfying $\max _{i} P\left(\sup _{z \in \mathbb{R}}\left|X_{i}-z\right|<1\right) \leq b$ for some $b \in(0,1)$. Let $c_{0}>0, L>0$ and $u \in(0,1)$. Then for any vector $v \in \mathbb{R}^{n}$ with $|v| \geq c_{0}$ and any $\varepsilon \geq 0$, we have

$$
P(\langle X, v\rangle<\varepsilon) \leq C \varepsilon+C \exp \left(-\widetilde{c} L^{2}\right)+\frac{C}{R L C D_{L, u}^{X}(v)}
$$

Here $C>0, \tilde{c}>0$ may only depend on b, c_{0}, u.

In words

If RLCD of a vector v is large, then the scalar product $\langle X, v\rangle$ has great anti-concentration properties!

- Let ν be the random normal, orthogonal to columns $A e_{2}, \ldots, A e_{n}$.
- Goal: $\operatorname{RLCD}(\nu)=L A R G E$.
- Let $M=\left[A e_{2}, \ldots, A e_{n}\right]^{T}$, then $M \nu=0$ (since it is orthogonal to all the rows of M).
- Consider a net \mathcal{N} (from the net theorem) on \mathbb{S}^{n-1} with respect to M.
- Let $S_{b a d}=\left\{y \in \mathbb{S}^{n-1}: R L C D(y)=\right.$ small but not too small $\}$ (a level set)
-

$$
P\left(\nu \in S_{b a d}\right)=P\left(\inf _{x \in S_{b a d}}|M x|=0\right) \leq \# \mathcal{F} \cdot P(|M x|<\epsilon \sqrt{n}),
$$

where $\mathcal{F} \subset \mathcal{N}$ which forms a net on $S_{\text {bad }}$.

- Since on $S_{b a d}$ RLCD is not too bad, $P(|M x|<\epsilon \sqrt{n})$ is small.
- Most of the points on a lattice have large RLCD! - the double counting method.
- $\# \mathcal{F} \leq e^{-C n} \# \mathcal{N}$, since $R L C D$ is stable.
- Combining these bounds allows to iterate on the level sets and to obtain the distance theorem.
- How to remove the $\left(\log \frac{1}{\epsilon}\right)^{n}$ from the "tall" Theorem?
- What can one say about the invertibility of inhomogeneous sparse matrices?
- Given a random matrix A with an inhomogeneous profile, determine the expectation of $\sigma_{n}(A)$ explicitly depending on the profile.
- Estimate $\sigma_{n}(B+M)$ where B is the Bernoulli matrix and M has Hilbert-Schmidt norm larger than Cn.
- What can be said about the invertibility of the inhomogeneous symmetric Wigner matrices?

Thanks for your attention!

