Mathematics 1501 Hour Examination
W. L. Green
November 20, 2003

Directions: Do all problems. Show your work, and justify your answers. Calculators are allowed, but this is a closed book examination. Please put your name and your recitation leader’s name on each page of your examination.

1. (32) Calculate each of the following derivatives and integrals.

a. \(\frac{d}{dx} (\ln(7x^3)) = \frac{1}{7x^3} \cdot (3 \cdot 7x^2 \cdot 4) = \frac{21}{x} \)

b. \(\int_0^{\pi/4} \tan 2x \, dx = \frac{1}{2} \int_0^{\pi/4} \tan u \, du = \frac{1}{2} \left[\ln \sec u \right]_0^{\pi/4} + \frac{1}{2} \ln |\sec u| \)

\(= \frac{1}{2} \ln \sqrt{2} = \frac{1}{4} \ln 2 \)

c. \(\frac{d}{dx} (e^{5x^2+1}) = e^{5x^2+1} \cdot (10x) \)

d. \(\int \frac{e^{2x}}{4+e^{2x}} \, dx = \frac{1}{2} \int \frac{du}{4+u} = \frac{1}{2} \ln |4+u| + C \)

\(= \frac{1}{2} \ln (4 + e^{2x}) + C \)

\(u = e^x \)

\(du = 2e^x \, dx \)
2. (20) Let R denote the region in the plane between the graphs of \(y = \sqrt{1 + x^2} \) and \(y = x \) from \(x = 0 \) to \(x = 1 \).

a. Write out an integral, with limits, which represents the volume of the solid generated by revolving R about the y-axis.

\[
\int_0^1 2\pi x \sqrt{1 + x^2} \, dx - 2\pi \int_0^1 x^2 \, dx
\]

b. Evaluate the integral in part a of this problem.

\[
2\pi \int_0^1 x \sqrt{1 + x^2} \, dx - 2\pi \int_0^1 x^2 \, dx
= \left[2\pi \frac{1}{3} (1 + x^2)^{3/2} \right]_0^1 - \left[2\pi \frac{x^3}{3} \right]_0^1
= \frac{2\pi}{3} (2\sqrt{2} - 1) - \frac{2\pi}{3} = \frac{2\pi}{3} (2\sqrt{2} - 2)
\]

Since \(\int x \sqrt{1 + x^2} \, dx \)

\[
= \int \frac{1}{2} u^{1/2} \, du = \frac{1}{2} \cdot \frac{2}{3} u^{3/2} + C
\]

\[
= \frac{1}{3} u^{3/2} + C = \frac{1}{3} \left(1 + x^2 \right)^{3/2}
\]

\[
\begin{align*}
\frac{du}{dx} &= 1 + x^2 \\
\int \frac{2x}{\sqrt{1 + x^2}} \, dx
\end{align*}
\]
3. (24) A water tank is in the shape of a right circular cone with radius 2 and height 6, so that the cone can be pictured as the region generated by revolving the triangle with vertices (0,0), (0,6) and (2,6) about the y-axis. The tank is full of water.

a. How much water is in the tank?

\[
V = 2\pi \int_0^2 x \left(6 - 3x\right) dx = 2\frac{\pi}{3} \left[3x^2 - x^3\right]_0^2 = 2\frac{\pi}{3} (4 - 8) = 8\frac{\pi}{3}
\]

b. How much work is done in pumping all of the water out of the tank? The weight density of water is about 62.5.

Change coordinate system:

\[
A(x) = \pi \left(2 - \frac{x}{3}\right)^2
\]

\[
W = \int_0^6 \left(6.25\right) \pi x \left(2 - \frac{x}{3}\right)^2 dx = \frac{125\pi}{2} \int_0^6 \left[4x - \frac{4}{3} x^2 + \frac{x^3}{9}\right] dx
\]

\[
= \frac{125\pi}{2} \left[2x^2 - \frac{4}{3} \frac{x^3}{3} + \frac{x^4}{54}\right]_0^6 = \frac{125\pi}{2} \left[72 - 96 + 36\right] = \frac{125\pi}{2} (12) = 750 \pi
\]
4. (12) A spring of natural length 9 inches compressed to a length of 6 inches exerts a restoring force of 3 pounds. How much work is done by the spring in restoring itself from 13 inches to its natural length?

\[F(x) = -kx \]

\[3 = -k \left(-\frac{3}{4} \right) = \frac{k}{4}, \quad \text{so} \quad k = 12 \]

\[W = \int_{3}^{0} (-12x) \, dx = \left[-6x^2 \right]_{3}^{0} = 6 \left(\frac{1}{3} \right)^2 = \frac{2}{3} \text{ ft-lb} \]

5. (12) Simplify each of the following.

a. \(\ln(2x) - \ln(2) = \ln(2) + \ln(x) - \ln(2) = \ln x \)

b. \(3^{\log_{3}16} = 4 \quad \text{since} \quad \log_{3}16 = 4 \)

c. \(\log_{3} \sqrt{64} = \log_{2} 8 = 3 \)