The existence of non-measurable sets

Theorem: Suppose A is a measurable subset of \mathbb{R}, and suppose that every subset of A is also measurable. Then A has measure zero.

Proof: Let E denote the set of all rational elements of \mathbb{R}.

Choose a set $E \subseteq \mathbb{R}$ that consists of exactly one element from each coset of E. Then E has the following properties:

1. $(E+r) \cap (E+r')$ is empty if $r \in E, r' \in E$ and $r \neq r'$
2. $E = \bigcup_{r \in E} E + r$

(That is, $\{E+r : r \in E\}$ is a partition of \mathbb{R}.)

If $x, z \in \mathbb{R}$, then $y + r = z + s$ for some $y, z \in E$, then $y - z = s - r \in \mathbb{Q}$, so that y and z lie in the same coset of E, say $y = z + s$, so $r = y - z$.

If $x, y \in E$ be the point in the coset $E + r$, and let $r = x - y$.

Then $x = y + r$ with $y \in E$, so $x \in E + r$.

Now, for each rational r, consider $A_r = A \cap (E + r)$. By hypothesis, each A_r is measurable, and A is the union of the A_r. Since $\{E + r : r \in E\}$ is a partition of \mathbb{R}, it suffices to show that A_r has measure zero, and to show that $\bigcup_{r \in E} A_r = A$.

By inner regularity of Lebesgue measure, it suffices to show that for each closed subset K of E, $\int_K 1_A \, d\lambda = 0$. Since each closed subset of \mathbb{R} is a countable union of compact subsets, we may assume K is compact. Let H be the union of the translates $E + r$, where r ranges over $E \cap [0, 1]$. Then H is bounded.

If $K \subseteq E + r$, then $K + r \subseteq [x : |x| \leq MH]$ for each $r \in [0, 1]$. Then $|H| < \infty$.

Since $K \subseteq E + r$, property 1 above shows that the sets $E + r$ are pairwise disjoint. Thus $|H| = \sum |K + r| = \sum |K|$. Since $|H| < \infty$, we must have $|K| = 0$, as desired.

Corollary: If A is a subset of \mathbb{R} of positive measure, then A contains a non-measurable set.

Note: One can show that if $E \subseteq \mathbb{R}$ and $|E| > 0$, then $\{x - y : x \in E, y \in E\}$ contains an interval of non-zero length centered at the origin. Thus, if E is a subset of \mathbb{R} with strictly positive measure, then E contains a non-measurable set.