Mathematics 4431 Final Examination – December 15, 2006

Directions: Do all problems. Show your work, and justify your answers and assertions. (“Justify your answer” means give a proof or a counterexample.) This is a closed book examination, and calculators are allowed. Throughout this examination, the symbol “\mathbb{R}” will denote the real number system; unless otherwise specified, we will assume \mathbb{R} has the usual topology. Please put your name on your bluebook.

1. (20) Let X be a topological space, and let p be a point of X.
a. Show that the intersection of any finite collection of neighborhoods of p is again a neighborhood of p.
b. Give an example of a topological space X and a point p in X such that closure of $\{p\}$ in X is different from $\{p\}$ (i.e, such that $\{p\}$ is not a closed subset of X).

2. (10) Let Q denote the set of all rational numbers, with the subspace (i.e., relative) topology from the usual topology on \mathbb{R}. Show that if x is an element of Q, then the connected component of Q that contains x is $\{x\}$. [Hint: between any two distinct rationals in \mathbb{R} there lies an irrational number.]

3. (10) Let $\{X_n\}$ be a collection (not necessarily countable) of compact Hausdorff spaces, and let X be the product of the collection $\{X_n\}$, with the product topology. Show that a subset S of X is compact (in the relative topology) if and only if it is closed in X.

4. (20) Let $\{x_n\}$ be a sequence in a metric space X.
a. Show that if p is a point of X, and if $\{x_n\}$ does not converge to p, then there exist a neighborhood U of p and a subsequence of $\{x_n\}$ that lies in the complement $X - U$ of U.
b. Suppose X is compact, and suppose $\{x_n\}$ has exactly one cluster point in X. Show that $\{x_n\}$ converges.

5. (10) Suppose f is a uniformly continuous function from a metric space (X,d) into a complete metric space (Y,ρ). Show that if $\{x_n\}$ is a Cauchy sequence in (X,d), then $\{f(x_n)\}$ is a convergent sequence in (Y,ρ).

6. (30) For each of the following, either give an example of what is described below or give a reason why no such example can exist:
a. a totally ordered set that is not well ordered
b. a compact pseudometric space that is not Hausdorff
c. a closed subset of \mathbb{R} (with the usual topology) that has no limit points
d. a continuous function on a compact space X into \mathbb{R} that is not a closed function
e. a topological space with a countable base that is not separable
f. a net that is not a sequence.
1) Let U_1, \ldots, U_n be neighborhoods of p. Choose open sets O_1, \ldots, O_n with $p \in O_i \subseteq U_i$ for all i. Then $p \in \bigcap_{i=1}^n O_i \subseteq \bigcap_{i=1}^n U_i$, and $\bigcap_{i=1}^n O_i = \{p\}$.

b) Let X be any set with at least two points and the trivial topology. Then for each p in X, the closure of $\{p\}$ is $X \neq \emptyset$.

2) Let C be the component of Q that contains x. Suppose C contains two distinct points y and z. We may assume $y < z$. Choose an interior number v with $y < v < z$. Then $\{a \in Q : a < v\}$ and $\{b \in Q : v < b\}$ are non-empty open subsets of Q, and their intersections with C disconnect C. $\{a \in Q : a < v\}$ and $\{b \in Q : v < b\}$ are open and closed and non-empty proper subsets of C.

3) Suppose S is connected in X. The product of Hausdorff spaces is Hausdorff, so S is a connected subset of a Hausdorff space X, so S is closed in X. Conversely, if S is closed in X, then S is a closed subspace of the product of compact spaces, which is compact by the Tychonoff Theorem, so S is itself compact.

4) a) Suppose (x_n) does not converge to p. Then there exists a neighborhood U of p such that (x_n) fails to lie eventually in U. Thus for each $m \geq 1$, there exists n_m with $n_m \geq m$ and $x_{n_m} \notin U$. Choose $n_1 \geq 1$ with this property. Supposing that we have chosen n_1, n_2, \ldots, n_m with $i \leq n_i$ for all i, we must choose n_{m+1} and $x_{n_{m+1}} \notin U$ for all i, now choose $n_{m+1} \geq \max\{n_1, n_2, \ldots, n_m, m\}$ and $x_{n_{m+1}} \notin U$.

By induction, we get a subsequence (x_{n_k}). A (x_{n_k}) with $x_{n_k} \notin X-U$ for all k.

b) Let Φ be the unique cluster point of (x_{n_k}) in X. Suppose (x_{n_k}) does not converge to Φ. Then by part a), there exists n_k and U with $x_{n_k} \notin X-U$ for all i. We may assume U is an open neighborhood of Φ. Thus $X-U$ is closed. Since X is compact, $X-U$ is compact. Then (x_{n_k}) has a cluster point $x \in X-U$. But a cluster point of (x_{n_k}) is also a cluster point of (x_n), so we have reached a contradiction.

5) Let $\varepsilon > 0$. Choose $M > 0$ such that $d(x, y) < \varepsilon$ implies $d(f(x_n), f(y_n)) < \varepsilon$. Now choose N so that $n \geq N$ and $u \geq N$ imply that $d(x_n, x_m) < \varepsilon$. Then $d(f(x_n), f(x_m)) < \varepsilon$. Thus $\{f(x_n)\}$ is Cauchy. Since (Y, ρ) is complete, $\{f(x_n)\}$ is convergent.
6 a) \(R \) with the usual ordering

6 b) Let \(X \) be any set with at least two elements and give it
the trivial pseudometric \(d(x, x) = 0 \) and \(d(x, y) = 1 \) for \(x \neq y \).

6 c) the empty set

6 d) This cannot happen. If \(C \) is closed in \(X \), then \(C \) is compact,
so \(f(C) \) is compact. Since \(R \) is Hausdorff, \(f(C) \) is closed in \(R \).

6 e) This cannot happen. Let \(\{B_i\} \) be a countable base for the
topology, and choose \(x_i \in B_i \). Then \(\{x_i\} \) is a countable dense
subset.

6 f) Let \(\mathcal{F} \) be the set of all finite subsets of \(R \). For each
\(F \in \mathcal{F} \), choose a point \(x \in R \). Then \(\{x \in R \mid x \in F \} \)
is a net in \(R \), where \(F_1 \prec F_2 \) means \(F_1 \subseteq F_2 \). Clearly \(F \neq \emptyset \).

Let \(\mathcal{J} \) be the collection of all open intervals
in \(R \) of the form \((-\epsilon, \epsilon)\), where \(\epsilon > 0 \). For each \(\epsilon \in \mathcal{J} \),
choose \(x \in X \). We order \(\mathcal{J} \) by \((-\epsilon, \epsilon) \prec (-\delta, \delta) \iff \delta < \epsilon.
Then \(\{x \} \in \mathcal{J} \) is a net in \(R \) and \(\{x \} \) converges to \(0 \).
Note that \(\mathcal{J} \) is uncountable, so \(\mathcal{J} \neq \emptyset \).