Directions: Do any four of the five problems below. Show your work, and justify your answers and assertions. This is a closed book examination, and calculators are allowed. Throughout this examination, the symbol “C” will denote the complex number system, and || and < , > will denote norms and inner products. Throughout this examination, “show” means “prove.”

1. (25) Let \(\{x_k\} \) be a sequence in a pre-Hilbert space \(V \).
 a) Use the Cauchy-Schwarz Inequality to show that if \(\| x_k \| \to 0 \), then for all \(z \) in \(V \) we have \(\langle x_k, z \rangle \to 0 \).
 b) Let \(x \) be any element of \(V \). Show that \(\| x_k - x \| \to 0 \) if and only if we have both \(\| x_k \| \to \| x \| \) and \(\langle x_k, x \rangle \to \langle x, x \rangle \).

2. (25) Let \(H \) be the three-dimensional Hilbert space \(\mathbb{C}^3 \) with the usual inner product. Let \(S \) be the subset \(\{ (1, 1, 0), (1, 1, i), (1, 1, -i) \} \) of \(\mathbb{C}^3 \), where \(i \) denotes the usual square root of \(-1\).
 a) Find an orthonormal set in \(\mathbb{C}^3 \) with the same span as \(S \).
 b) Is the set \(S \) a total subset of the space \(\mathbb{C}^3 \)? Why or why not?

3. (25) Let \(S \) be a linear subspace of a Hilbert space \(H \). Prove that \(S \) is complete if and only if \(S \) is closed. (Your text gives a proof of this result for a subset \(S \) of a complete metric space \(H \); I want to see a similar proof for the case where \(H \) is a Hilbert space and \(S \) is a linear subspace.)

4. (25) Let \(H \) be a Hilbert space, let \(C \) be a non-empty subset of \(H \), and let \(x \) be a point in \(H \). Recall that if \(C \) is closed and convex, then there exists a unique point of \(C \) that is nearest to \(x \).
 a) Give an example to show that if \(C \) is not closed, then there may fail to be a nearest point in \(C \) to \(x \).
 b) Give an example to show that if \(C \) is not convex, then a nearest point to \(x \) in \(C \) may fail to be unique.

5. (25) Let \(\{x_k\} \) be a bounded orthogonal sequence of non-zero vectors in a pre-Hilbert space \(V \), and let \(S = \sup \{ \| x_k \| : 1 \leq k \} \).
 a) Show that for every \(x \) in \(V \), we have \(\sum_{k=1}^{\infty} |\langle x, x_k \rangle|^2 \leq \| x \|^2 S^2 \).
 b) Show that for every \(x \) in \(V \), the sequence \(\{ \langle x_k, x \rangle \} \) converges to zero.
1a) $\langle x, y \rangle \leq \|x\| \cdot \|y\|$, and $\|x_n\| \to 0$. Thus $\langle x, y \rangle \to 0$.

b) Suppose $\|x_n - x\| \to 0$. Then $0 \leq \|x_n - y\| \leq \|x_n - x\| + \|x - y\| \to 0$, so $\|x_n - y\| \to 0$. Also $\langle x_n - x, y \rangle \to 0$ by part a). Thus $\langle x, y \rangle = \langle x, \tilde{y} \rangle \to 0$, so $\langle x, y \rangle \to 0$.

Suppose $\|x_n - 0\| \to 0$ and $\langle x_n, y \rangle \to \langle x, y \rangle$. Then $\|x_n\|^2 \to 0$, and $\langle x_n, y \rangle = \langle x_n, y \rangle + \langle x, y \rangle$.

$\langle x_n, y \rangle = \langle x_n - x, x_n - x \rangle \\
\|x_n - x\|^2 = \langle x_n, x \rangle - \langle x, x \rangle$

$\|y\|^2 - \langle y, x \rangle = \|x\|^2 - \langle x, x \rangle = 0$

2. First normalize $(1, 1, 0)$ to get $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$. We apply Gram-Schmidt:

$\begin{align*}
(1, 1, 0) - \langle 1, 1, 0, 1, 1, 0 \rangle (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) = (1, 1, 0) - \sqrt{2} (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) = (0, 0, 0)
\end{align*}$

Since $\langle 0, 0, 0, 0 \rangle = 0$, the first two elements of our orthonormal set are $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ and $(0, 0, 0)$. Observe that the original set S is linearly dependent, since $\frac{1}{2} (1, 1, 0) + \frac{1}{2} (1, 1, -i) = (1, 1, 0)$. Thus the span of $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ and $(0, 0, 0)$ agrees with the span of S.

3. Suppose S is closed in H. Let (x_n) be Cauchy in S. Then (x_n) is a Cauchy sequence in H. Since H is complete, we have $x_n \to x$ for some $x \in H$. Since S is closed and $x_n \to x$ with $x_n \in S$, we have $x \in S$. Then every Cauchy sequence in S converges to a point of S, so S is complete.

Suppose S is complete. Let (x_n) with $x_n \to x \in H$. Since (x_n) converges in H, it is a Cauchy sequence in H. Hence it is a Cauchy sequence in S. Since S is complete, we have $x_n \to x$ for some $x \in S$. Thus $x_n \to x$ and $x_n \to 0$.

By uniqueness of limits, $x = 0$, so $x \in S$. Thus S is closed.

4a) Let $H = \mathbb{C}$. Let $x = 0$, and let $C = (0, i)$ (on the real axis).

b) Let $H = \mathbb{C}$. Let $x = 0$. Let C be the circle of radius 1 centered at zero.
5c) \[\sum_{k} |\langle x, x_k \rangle|^2 = \sum_{k} \frac{x_k}{\|x_k\|} \sum_{k} \frac{x_k}{\|x_k\|} \leq \sum_{k} \frac{x_k}{\|x_k\|} \|x_k\|^2 \leq S^2 \sum_{k} \frac{x_k}{\|x_k\|} \|x_k\|^2 \]
\[\leq S^2 \|x\|^2, \text{ by Bessel's inequality} \]

b) Since \[\sum_{k} |\langle x, x_k \rangle|^2 \] converges, \[|\langle x, x_k \rangle|^2 \to 0 \] as \[\langle x, x_k \rangle \to 0 \].