Which way is up?

Point uphill

Point uphill

Point uphill

Point uphill

"Uphill" as a vector

+ Direction
+Magnitude $=$ the slope in that direction, e.g., 5\% grade.

"Uphill" as a vector

+ Direction
+ Magnitude = the slope in that direction, e.g., 5\% grade.
+If it happens that "uphill" is along the positive x-axis, then the slope is

$$
\partial \mathrm{f} / \partial \mathrm{x}
$$

Directional derivative

+ Choose a direction, by taking a unit vector u.

Directional derivative

+ Choose a direction, by taking a unit vector u.
+ Measure rise/run over a small distance in the direction \mathbf{u}.

Directional derivative

+ What is the d.d. if the vector \mathbf{u} is tangent to a level curve?
+ What is the d.d. if the vector \mathbf{u} is normal (perpendicular) to a level curve?
+ Of all directions u, which one gives the greatest d.d.?

Partial derivatives as a vector

$+\ln 2$ dimensions, we have 2 partials, $\partial F / \partial x$ and $\partial F / \partial y$

Partial derivatives as a vector

$+\ln 2$ dimensions, we have 2 partials, $\partial F / \partial x$ and $\partial F / \partial y$

+ In 3 dimensions we have 3
$\partial F / \partial x, \partial F / \partial y$, and $\partial F / \partial z$

Partial derivatives as a vector

$+\ln 2$ dimensions, we have 2 partials,

$$
\partial F / \partial x \quad \text { and } \quad \partial F / \partial y
$$

+ In 3 dimensions we have 3 $\partial F / \partial x, \partial F / \partial y$, and $\partial F / \partial z$
+ Same number as components of a vector, hmmmmm.

Differentiation as a threedimensional concept

+ Since you can't divide by a vector, $f(x+h)-f(x)$

Differentiation as a threedimensional concept

+ Since you can't divide by a vector,
+ We say f is differentiable iff

$$
f(x+h)-f(x)=y \bullet h+o(h)
$$

for some vector y (which will depend on x).

Differentiation as a threedimensional concept

+ Since you can't divide by a vector,
+ We say f is differentiable at $x=x_{0}$ iff

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=y \bullet h+o(h)
$$

for some vector \mathbf{y} (which will depend on \mathbf{x}_{0}).

+ This is like the 1-D formula of a tangent line,

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) h+o(h)
$$

Differentiation as a threedimensional concept

+ Since you can't divide by a vector,
+ We say f is differentiable iff

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=y \cdot h+o(h),
$$

$+y$ is called the gradient of f at x_{0}, and denoted $\nabla f\left(\mathrm{x}_{0}\right)$.

Differentiation as a threedimensional concept

+ Since you can't divide by a vector,
+ We say f is differentiable iff

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=y \bullet h+o(h),
$$

$+y$ is called the gradient of f at x_{0}, and denoted $\nabla f\left(\mathrm{x}_{0}\right)$.

+ The gradient $\nabla \mathrm{f}(\mathbf{x})$ of a scalar function is a vector-valued function of a vector variable!

$$
\square
$$

Some good news:

+ It is easy to calculate the gradient.

Some good news:

\pm 比 is easy to calculate the gradient.

+ With the gradient you can easily calculate directional derivatives.

Some good news:

\pm te is easy to calculate the gradient.

+ With the gradient you can easily calculate directional derivatives.
+ "Uphill" is nothing other than the gradient!

Some good news:

+ te is easy to calculate the gradient.
+ With the gradient you can easily calculate directional derivatives.
+ "Uphill" is nothing other than the gradient!
+Tangent planes are also not hard to work out.

Some remarks mostly for the future, connecting the gradient to the notion of a "tangent plane."

$$
\begin{gathered}
\left(z-z_{0}\right)-\left(\tilde{y}_{1}\right)\left(x-x_{0}\right)-\tilde{y}_{2}\left(y-y_{0}\right)=0 \\
N \cdot\left(\bar{r}-\tilde{r}_{0}\right)=0 \\
\vec{h}=\binom{x-x_{0}}{y-y_{0}}=
\end{gathered}
$$

gradient is a 2 -vecto

$$
\tilde{y}=\binom{y_{1}}{y_{2}}
$$

Now let's do some examples

+ Let's consider $f(x, y)=e^{x} \cos y$. (You might see this function in a thermodynamics class, since it is a possible equilibrium temperature distribution in a homogeneous solid.)

$\nabla f=e^{x} \cos y \mathbf{i}-e^{\mathrm{x}} \sin \mathrm{y} \mathbf{j}$ Magnitude is e^{x}.

Q. What is tho dir derv: of $f(x, y)=e^{x} \cos y$ in dir || $\hat{1}+\hat{\jmath}$ a $(x, y)=(1, \pi)$?

$$
|\nabla f| \mid=\sqrt{e^{2 x} \cos ^{2} y+e^{-2 x} \sin ^{2} y}=e^{x}
$$

1. Calculate the gradient
2. Identify a unit vector in the direction you want: $\quad 2^{-1 / 2} \mathbf{i}+2^{-1 / 2} \mathbf{j}$.
3. Take dot product

ANSWER: $\quad 2^{-1 / 2} e^{1}(\cos \pi-\sin \pi)=-e / 2^{1 / 2}$.

How to determine the gradient from a topographic map

+ Direction - perpendicular to the "contour" (= level curve) passing through the position of interest.
+ Calculate slope by measuring off a short distance and counting the contours crossed in that distance.
+Given a direction and a magnitude, you have the vector.

How to determine the gradient from

 a topographic map+ In the classroom example, from the Utah map, we found a spot where by moving uphill a distance 5/37 of a mile, we crossed 5 contours separated by 40 feet in height:
+ rise $=5 * 40=200$
+ run $=5 * 5280 / 37$
+ slope = .2803...
A 28% grade is pretty darn steep, but far from the steepest on that map, I can tell you!

A problem from an old final exam:

A topographic map such as the one shown here, of the Chattahoochee National Recreation Area in Sandy Springs, is a contour plot for a function $f(x, y)$. The contours are level sets for values of $z=f(x, y)$. Contours are separated by heights of 10 feet (every fifth contour is

Annotate the contour map as follows:
a) Find the top of a hill and label it with the letter \mathbf{T}.
b) Find a saddle point and label it with the letter \mathbf{S}.
c) There are several cliffs in the park. Find a cliff on this map and label it with the letter \mathbf{C}.
d) In the lower left part of the map you will find a small arrow. Estimate the gradient at the point of the arrow. By the way, the arrow drawn is not meant to indicate the gradient at its base.) Draw a vector on the map with the same direction as the gradient, and estimate the magnitude of the gradient here:

