1. Let \(A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \).

(10 points) a. If \(A \) is invertible, find \(A^{-1} \).
(Problem 1 Continued)

(1 point) b. Using the matrix A^{-1} you found in part a, compute AA^{-1}.

(3 points) c. Find elementary matrices E_1, \ldots, E_k (how many depends on how you did part a on the preceding page) such that $E_k \cdots E_1 A = I$.

Hint: You’ve already done the work, just write them down. I is the reduced row echelon form of A.
2. Let \(W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 : \begin{array}{l} x_1 + x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + 3x_3 + x_4 = 0 \\ 3x_1 - x_2 + 5x_3 + 3x_4 = 0 \end{array} \right\} \)

(10 points) a. Is \(W \) a subspace of \(\mathbb{R}^4 \)? Why or why not? If it is, find a basis for \(W \) and find \(\dim(W) \).
(Problem 2 Continued)

(3 points) b. Find a basis for W^\perp and find $\dim(W^\perp)$.
3. Let \(u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \ u_2 = \begin{bmatrix} 3 \\ 4 \\ 1 \\ 1 \end{bmatrix} \), and let \(W = \text{span}\{u_1, u_2\} \). Let \(v = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \end{bmatrix} \).

(2 points) a. What is \(u_1 \cdot u_2 \)? Are \(u_1, u_2 \) orthogonal vectors?

(10 points) b. Find the vector \(p \) in \(W \) that is closest to \(v \).
(Problem 3 Continued)

(2 points) c. Find vectors $p \in W$ and $e \in W^\perp$ such that $v = p + e$.
4. Let \(A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 5 & 5 & 4 & -5 \\ 0 & 0 & 0 & -1 \end{bmatrix} \).

(6 points) a. Find the characteristic polynomial of \(A \).

(4 points) b. Find the eigenvalues of \(A \) and state the multiplicity of each. Based SOLELY on this information, can you determine whether \(A \) is invertible or not?
(Problem 4 Continued)

(10 points) c. Find a basis for each eigenspace of A.
(Problem 4 Continued)

(8 points) d. If A is diagonalizable, write down a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$. You do not need to find P^{-1}.

(4 points) e. Is $w = \begin{bmatrix} -4 \\ 1 \\ 2 \\ -1 \end{bmatrix}$ an eigenvector of A? How do you know?
(4 points) 5. Suppose that v_1, v_2 are orthonormal vectors in \mathbb{R}^n. Find $\|v_1 - v_2\|$.
Hint: Draw a picture.
6. Compute the following if possible, otherwise write *undefined* or *nonsense* as appropriate.

(1 point) a. A basis for the matrix
\[
\begin{bmatrix}
1 & 2 & 1 \\
0 & 2 & 2 \\
1 & 0 & 2
\end{bmatrix}
\]

(1 point) b. The determinant of
\[
\begin{bmatrix}
3 & 2 & 1 \\
0 & 2 & 2 \\
0 & 0 & 2
\end{bmatrix}
\]

(1 point) c.
\[
\begin{bmatrix}
1 & 2 \\
2 & 3 \\
1 & 0
\end{bmatrix}^T \begin{bmatrix}
2 & 0 & -1 \\
0 & 2 & 2
\end{bmatrix} =
\]

11
7. Complete the following.

(1 point) a. Let v_1, \ldots, v_k be k vectors in \mathbb{R}^n. Define $\text{span}\{v_1, \ldots, v_k\}$.

(1 point) b. Vectors v_1, \ldots, v_n in \mathbb{R}^m are linearly independent if

(1 point) c. Let A be an $m \times n$ matrix. Define $\text{Nul}(A)$.

8. For each part, circle T for True or F for False (no explanation required). Note: An answer of “sometimes true and sometimes false” or “cannot be determined” would count as False.

T F a. If A is an 7×8 matrix with 3 pivots, then the rowspace of A is a 3-dimensional subspace of \mathbb{R}^8.

T F b. If A is an $n \times n$ matrix and λ is an eigenvalue of A, then $\dim(\text{Nul}(A - \lambda I_n)) \leq \text{multiplicity}(\lambda)$.

T F c. If P is an invertible $n \times n$ matrix and D is a diagonal matrix and if $A = PDP^{-1}$, then the diagonal entries of D are the eigenvalues of A, and the columns of P are the eigenvectors of A.

T F d. If W is a subspace of \mathbb{R}^n and $v \in W$, then the orthogonal projection of v onto W is 0.

T F e. The dot product of $u, v \in \mathbb{R}^n$ is $u \cdot v = uv^T$.

T F f. Eigenvalues of an $n \times n$ matrix A must be nonzero, but eigenvectors can be zero.

T F g. If v_1, \ldots, v_k are orthogonal vectors in \mathbb{R}^n, then they are linearly independent.

(3 points EXTRA CREDIT) Suppose that A is an $n \times n$ matrix which has the property that $A^5 = 0$ (note that this does NOT imply that $A = 0$!). Prove that $\lambda = 0$ is the only eigenvalue of A. (Use back of the page for answer.)

(3 points EXTRA CREDIT) Prove that if v_1, \ldots, v_k are orthonormal vectors in \mathbb{R}^n, then they are linearly independent. (Use back of the page for answer.)