1.6 Russell's Paradox

We said that an informal definition is "a set is a collection of objects." This isn't really precise, it essentially says that "a set is a set of objects," which doesn't define what a set is. For most purposes, it's not worth the trouble of trying to say exactly what a set is -- take a course in set theory for the details. But it is fun to point out what the "problem" with sets is.

Let

\[G = \{ S : S \text{ is a set } \& S \not\in S \} \]

That is, \(G \) is the set of all sets that are not elements of themselves. For example, the set of all real numbers is not itself a real number, so \(\mathbb{R} \not\in \mathbb{R} \) and therefore \(\mathbb{R} \) is one of the elements of \(G \).

Let

\[B = \{ S : S \text{ is a set } \& S \in S \} \]

I confess that I don't know of any sets that are elements of themselves, so I can't show you any elements of \(B \), but who knows, maybe some exist. If they don't, then \(B \) is simply the empty set.
The letter G is for "good" & B is for "bad."

Every set S is either good or bad: we must have either $S \in S$ or $S \notin S$ (and in this case, it's an exclusive or, we can't have both). So if G is a set then there are only two possibilities:
$G \notin G$ or $G \in G$.

If $G \in G$ then G is a set & $G \notin G$, so G satisfies the requirements to be in G. That is, G is one of the good sets, i.e., $G \in G$. CONTRADICTION!

If $G \notin G$ then G has to satisfy the requirements of elements of G, which are that G is a set and $G \notin G$.

CONTRADICTION.

Either possibility leads to a contradiction. G being a set leads to a contradiction. Only way out:

G is not a set.

Moral: You can't just write \(\{ x : x \text{ satisfies property } P \} \) and always get a set. However, in practice these exceptions are very rare.