2.7 The Homomorphism Theorems

Motivation
Consider the map

\[f: \mathbb{R}^2 \to \mathbb{R} \]
\[f(a, b) = b \]

\(f \) sends a point \((a, b) \in \mathbb{R}^2\) to the number \(b \in \mathbb{R}\).

If we think of \(\mathbb{R}^2\) and \(\mathbb{R}\) as being groups under addition, then \(f\) is a homomorphism because

\[
f((a_1, b_1) + (a_2, b_2)) = f((a_1 + a_2, b_1 + b_2)) = b_1 + b_2 = f((a_1, b_1)) + f((a_2, b_2)).
\]
f is surjective, but it is not injective — any two points with the same second coordinate are mapped to the same place. In fact,

$$N = \ker(f) = \{ (x,0) : x \in \mathbb{R} \} = \text{x-axis in } \mathbb{R}^2.$$

Recall that we earlier used \mathbb{R}^2/N as an example motivating the definition of the quotient group. The cosets of N are

$$N + (a,b) = N + (a,0) = \{ (x,0) : x \in \mathbb{R} \} = L_b,$$

the line a height b. The quotient group \mathbb{R}^2/N is the set of all cosets of N:

$$\mathbb{R}^2/N = \{ L_b : b \in \mathbb{R} \},$$

the set of all horizontal lines in \mathbb{R}^2.

The canonical projection $\pi : \mathbb{R}^2 \to \mathbb{R}^2/N$ sends a point (a,b) to the coset $N + (a,b) = L_b ;$
\[\pi : \mathbb{R}^2 \to \mathbb{R}^2 \div N \]
\[\pi((a,b)) = L_b \]

\(\pi \) is a homomorphism — we saw that the operation in \(\mathbb{R}^2 \div N \) is given by \(L_b + L_c = L_{b+c} \), so

\[\pi((a_1,b_1) + (a_2,b_2)) = \pi((a_1+a_2,b_1+b_2)) \]

\[= L_{b_1+b_2} \]

\[= L_{b_1} + L_{b_2} \]

\[= \pi((a_1,b_1)) + \pi((a_2,b_2)) \]
So now we have two maps on \mathbb{R}^2:

$$
\begin{array}{rcl}
\mathbb{R}^2 & \xrightarrow{f} & \mathbb{R} \\
\text{surjective homomorphism} & & \\
\downarrow & & \\
\mathbb{R}^2/N & \xrightarrow{g} & \\
\text{surjective homomorphism} & & \\
\end{array}
$$

These two maps are related by the fact that

$N = \ker(f)$ and \mathbb{R}^2 maps onto \mathbb{R}^2/N.

The kernel of f is used to make the quotient group \mathbb{R}^2/N.

Now compare the two ranges \mathbb{R} and \mathbb{R}^2/N.

They are actually very similar!
\[\mathbb{R} = \text{set of numbers} \quad \mathbb{R}^2/N = \text{set of lines} \]
\[= \{ b : b \in \mathbb{R} \} \quad = \{ L_b : b \in \mathbb{R}^2 \} \]

Operation is
\[b + c = \text{usual sum of } b \text{ and } c \]

Operation is
\[L_b + L_c = L_{b+c} \]

These groups have the same structure, and they are actually isomorphic. That is, we claim that
\[\mathbb{R}^2/N \cong \mathbb{R} \]

To prove this, we must show that there exists an isomorphism \(\Psi \) that maps \(\mathbb{R}^2/N \) to \(\mathbb{R} \).

Define
\[\Psi : \mathbb{R}^2/N \to \mathbb{R} \]
\[\Psi(L_b) = b \]

\(\Psi \) maps the line at height \(b \) to the number \(b \).
\(\mathbb{R}^3 / \mathbb{N} \)
Set of all lines \(L_b \)

\(\psi \) is a bijection, & it is a homomorphism because

\[
\psi(L_b + L_c) = \psi(L_{b+c}) = b + c = \psi(L_b) + \psi(L_c).
\]

This is a general phenomenon!!

\[
\begin{array}{ccc}
G & \xrightarrow{f} & H \\
\downarrow \text{surjective homomorphism} & & \downarrow \text{Then } \exists \text{ isomorphism } \psi \\
G / N & , & N = \ker(f)
\end{array}
\]
The following result is known by many names, including:

First Homomorphism Theorem
First Isomorphism Theorem
The Homomorphism Theorem
The Isomorphism Theorem

First Homomorphism Theorem

Let \(f : G \rightarrow H \) be a **surjective** homomorphism of \(G \) onto \(H \), and let \(N = \ker(f) \). Then

\[
G/N \cong H
\]

The isomorphism is

\[
\Psi : G/N \rightarrow H \quad \Psi(\alpha N) = f(\alpha)
\]

Further,

\[
f = \Psi \circ \pi
\]
Proof,

We have a proposed definition of the isomorphism Ψ from G/N to H, namely, $\Psi(Na) = f(a)$. But does this definition make any sense? We could have $Na = Nb$ even though $a \neq b$. In this case $\Psi(Na)$ and $\Psi(Nb)$ must have the same definition, but should they be defined to be $f(a)$ or $f(b)$? The only way that this definition will be OK is if

$$Na = Nb \implies f(a) = f(b).$$

But we don't know that this is true, we have to prove it. To do this, suppose that we had $Na = Nb$. Then $ab^{-1} \in N = \ker(f)$. Therefore

$$\Psi_H = f(ab^{-1}) = f(a) - f(b)^{-1}.$$

because $ab^{-1} \in \ker(f)$ because f is a homomorphism.
Hence we do indeed have \(f(a) = f(b) \). Therefore the proposed function \(\Psi \) is well-defined, i.e., it makes sense.

Now we have to show that \(\Psi \) actually is an isomorphism. First let's show that it is a homomorphism. Given \(Na, Nb \in G/N \), we have

\[
\Psi((Na)(Nb)) = \Psi(N(ab)) \quad \text{def. of group } \Psi \text{ in } G/N
\]
\[
= f(ab) \quad \text{def. of } f
\]
\[
= f(a)f(b) \quad \text{since } f \text{ is a homomorphism}
\]
\[
= \Psi(Na)\Psi(Nb) \quad \text{def. of } f.
\]

Thus \(\Psi \) is indeed a homomorphism.

Since \(\Psi \) is a homomorphism, to show it is injective, we just have to show that \(\ker(\Psi) \) contains only the identity element of \(G/N \), which is...
$e_{G/N} = N$. So, suppose some element Na of G/N belonged to $\ker(\psi)$. This means that $\psi(Na) = e_H$.

By definition of ψ, this implies $f(a) = e_H$.

Thus $a \in \ker(f) = N$ so $Na = N = e_{G/N}$. Thus:

$Na \in \ker(\psi) \implies Na = e_{G/N} = N$

so $\ker(\psi) = \{N\} = \{e_{G/N}\}$. Thus $\psi \neq$ injective.

Lastly, to show ψ is surjective, suppose $h \in H$ is given. Since f is surjective, we know that $h = f(a)$ for some $a \in G$. Hence

$\psi(Na) = f(a) = h$.

Thus ψ is surjective.
Therefore, we have shown that Ψ is an isomorphism of G/N onto H. So, it remains only to show that $f = \Psi \circ \pi$. To show this, suppose $a \in G$. Then:

$$(\Psi \circ \pi)(a) = \Psi(\pi(a)) = \Psi(Na) = f(a).$$

Thus $\Psi \circ \pi = f$. \hfill \Box$$
Remark

What if f isn't surjective? In this case $\text{range}(f)$ is a subgroup of H, and

$$f: G \to \text{range}(f)$$

is surjective. Therefore, if $N = \ker(f)$ then by the First Homomorphism Theorem implies that

$$G/N \cong \text{range}(f).$$
Example

Suppose $G = \langle a \rangle$ is a finite cyclic group of order m.

Define

$$f: \mathbb{Z} \rightarrow G$$

$$f(k) = a^k$$

Exercise: Show that f is a surjective homomorphism.

The kernel of f is

$$\ker(f) = \{ k \in \mathbb{Z} : a^k = e \}$$

$$= \{ km : k \in \mathbb{Z} \} \quad \text{since } m = o(a)$$

$$= m \mathbb{Z} = [m]$$

The First Homomorphism Theorem implies that

$$G \cong \mathbb{Z}/m \mathbb{Z} = \mathbb{Z}_m.$$

Thus, every cyclic group of order m is isomorphic to $\mathbb{Z}_m.$
Inverse image: Recall the definition
\[H = \varphi^{-1}(H') = \{ a \in G : \varphi(a) \in H' \} \]

Suppose \(\varphi : G \to G' \) is a surjective homomorphism with kernel \(K \). If \(H' \) is a subgroup of \(G' \), then its inverse image \(H = \varphi^{-1}(H') \) is a subgroup of \(G \). What kind of subgroup is it?

\[\begin{array}{c}
G \\
\varphi \\
H \\
\varphi^{-1}(H') \\
H' \\
G' \end{array} \]

Since \(H' \) contains \(e_{G'} \), the inverse image of \(H' \) will contain everything in \(G \) that maps to \(e_{G'} \), which is \(K \). So \(H = \varphi^{-1}(H') \) will contain \(K \).

Further, if we restrict our attention to \(\varphi \) on \(H \), i.e., take \(H \) as the domain of \(\varphi \), then \(\varphi \) is a surjective mapping of \(H \) onto \(H' \), and its kernel is \(K \). Therefore \(K \) is a normal subgroup of \(H \), and the First Homomorphism Theorem therefore implies that

\[H' \cong H/K. \]
Thus, every subgroup H' of G' is isomorphic to H/K when H is a subgroup of G.

Exercises

Show that if H' is normal in G' $(H' \triangleleft G')$ then H is normal in G $(H \triangleleft G)$.

Summary: The Correspondence Theorem

Suppose $\varphi: G \rightarrow G'$ is a homomorphism of G onto G' and let $K = \ker(\varphi)$. If H' is a subgroup of G', then its inverse image

$$H = \varphi^{-1}(H') = \{a \in G : \varphi(a) \in H'\}$$

is a subgroup of G, $H \triangleleft K$, & $H/K \cong H'$. If $H' \triangleleft G'$, then also $H \triangleleft G$.

Motivation for the Second Homomorphism Theorem

Let \(H = \text{x-y plane in } \mathbb{R}^3 \) (subgroup under +)
\(K = \text{y-z plane in } \mathbb{R}^3 \)

Then \(H + K = \mathbb{R}^3 \) (generic group notation would be \(HK \))

and \(H + K / H \cong \text{z-axis} \).

Also, \(HK = \text{y-axis} \)

and \(K / HK \cong \text{z-axis} \).

Thus \(H + K / H \cong K / HK \).

Note that in this example, all the subgroups are normal since \(\mathbb{R}^3 \) is abelian.
Second Homomorphism Theorem

Let H be a subgroup of G & N a normal subgroup of G. Then:

a. $HN = \{hn : h \in H, n \in N\}$ is a subgroup of G.

b. HN/N is a normal subgroup of H.

c. $HN/N \cong H/\text{HN}$

Proof: Exercise.

Hint: Define $f : H \rightarrow HN/N$

\[f(h) = hN \]

Show that f is a surjective homomorphism of H onto HN/N and that $\ker(f) = \text{HN}$. Then apply the First Homomorphism Theorem.
Third Homomorphism Theorem

Let \(\varphi : G \to G' \) be a homomorphism of \(G \) onto \(G' \), & set \(K = \ker(\varphi) \).

Suppose \(N' \triangleleft G' \), & set \(N = \varphi^{-1}(N') \). Then

\[
G/N \cong G'/N'. \quad (*)
\]

Note: By the First Homomorphism Theorem,

\[
G' \cong G/K \quad \text{and} \quad N' \cong N/K
\]

so we can reword (*) as

\[
G/N \cong G/K \cap N/K.
\]
Proof:

Define \[f: G \rightarrow G'/N' \]
\[f(a) = N'\varphi(a) \]

Claim: \(f \) is a surjective homomorphism.

First, to show it is onto, choose any coset \(N'b \in G'/N' \), i.e., \(b \) is any element of \(G' \).

Since \(\varphi \) is onto, \(b = \varphi(a) \) for some \(a \in G \). Hence \(N'b = N'\varphi(a) = f(a) \). Thus \(f \) is onto.

Now to show \(f \) is a homomorphism, suppose that \(a, b \in G \). Then

\[f(ab) = N'\varphi(ab) \]
\[= N'\varphi(a)\varphi(b) \text{ since } \varphi \text{ is a homomorphism} \]
\[= (N'\varphi(a))(N'\varphi(b)) \text{ since } N' \text{ is normal} \]
\[= f(a)f(b). \]

Thus \(f \) is a homomorphism.
Next we claim that \(\ker(f) = N \). To see this, suppose that \(a \in \ker(f) \). Then \(f(a) = N' \), the identity element of \(G'/N' \). Hence \(N' \psi(a) = f(a) = N' \), so \(\psi(a) \in N' \). Therefore \(a \in \psi^{-1}(N') = N \).

Thus \(\ker(f) \subseteq N \).

On the other hand, if \(a \in N = \psi^{-1}(N') \) then \(\psi(a) \in N' \), so \(f(a) = N' \psi(a) = N' \). Thus \(a \in \ker(f) \), so \(N \subseteq \ker(f) \).

Thus we have shown that \(f \) is a surjective homomorphism of \(G \) onto \(G'/N' \) with kernel \(N \).

The First Homomorphism Theorem therefore implies that \(G/N \cong G'/N' \).

Exercise: What exactly is \(\psi \), the isomorphism \(\psi \) from \(G/N \) onto \(G'/N' \)? Find a formula for it (in terms of \(\psi \)).