4.4 Maximal Ideals

Definition
A ring R is *simple* if it has no nontrivial ideals, i.e., \{0\} & R are the only ideals.

Definition
An ideal M in a ring R is a **maximal ideal** if

a. $M \subsetneq R$

b. There are no ideals I with $M \subsetneq I \subsetneq R$.

Note: Thus

R is a simple ring \iff \{0\} is a maximal ideal.
Theorem
Let M be a proper ideal in a ring R. Then:

\[M \text{ is maximal } \iff R/M \text{ is simple. } \]

Proof:

\[\Leftarrow \]
Suppose that R/M is simple. Suppose that I is an ideal in R & $M \subseteq I \subseteq R$.
Consider the canonical map

\[\pi: R \to R/M \]

\[\pi(a) = a + M. \]
Consider

\[J = \pi(I) = \{ a + M : a \in I \} \]

Exercise: Show J is an ideal in R/M.

But R/M is simple, so either $J = \{M\}$ (since M is the zero element of R/M), or $J = R/M$.

\[\text{[Handwritten annotations]} \]
Case 1: \(J = \{ M \} \).

We claim that this implies that \(I = M \).

To see this, suppose that \(a \in I \). Then, by definition of \(J \), we have \(a + M \in J \). But \(J = \{ M \} \), so this implies \(a + M = M \). Hence \(a \in M \), so we have shown that \(I \subseteq M \).

Exercise: Show that \(M \subseteq I \).

Thus, in this case we have \(I = M \).

Case 2: \(J = R/M \).

We claim that this implies that \(I = R \).

Note that we have \(I \subseteq R \), so we only have to show the reverse inclusion. Suppose that \(a \in R \). Then \(a + M \in R/M = J \), so \(a + M = b + M \) for some \(b \in I \). But then \(a - b \in M \), and
$M \subseteq I$, so $a-b \in I$. Since $b \in I$, we conclude $a = (a-b) + b \in I$. Therefore $R = I$.

Thus there are only two possibilities for I: either $I = M$ or $I = R$. Therefore M is maximal.

\Rightarrow Exercise.

Hint: Suppose that J is an ideal in R/M. Show that

$$ I = \pi^{-1}(J) = \{a \in R : a+M \in J \} $$

is an ideal in R, and $M \subseteq I \subseteq R$. Since M is maximal, this leaves only two possibilities.
Corollary

Let R be a commutative ring with identity, and let M be a proper ideal in R. Then:

M is maximal $\iff R/M$ is a field.

Proof:

\Leftarrow Suppose that R/M is a field. Then we know by earlier results that R/M is simple. The preceding theorem therefore implies that M is maximal.

\Rightarrow Suppose that M is maximal. Then R/M is a commutative ring with 1 that has no nontrivial ideals. We proved earlier that this implies that R/M is a field.
Example/Exercise

Consider \(R = \mathbb{Z} \). Suppose \(\text{det } n > 0 \) is composite, i.e., \(n = kl \) with \(k, l > 1 \).

Exercise: Show \(n \mathbb{Z} \not\subseteq k \mathbb{Z} \cap \mathbb{Z} \).

Thus \(n \mathbb{Z} \) is not a maximal ideal. Therefore \(\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z} \) is not a field.

Suppose \(p > 0 \) is prime. Show that \(p \mathbb{Z} \) is a maximal ideal, & conclude that \(\mathbb{Z}_p \cong \mathbb{Z}/p\mathbb{Z} \) is a field.