1. Prove the following statements. Note that the parts of this problem are not related to each other.

 a. Let K be a compact subset of \mathbb{R}^p, and let $r > 0$ be fixed. Prove directly from the definition of compact set that there exist finitely many points $x_1, \ldots, x_N \in K$ such that

 \[\forall y \in K, \ \exists n \in \{1, \ldots, N\} \text{ such that } \|y - x_n\| < r.\]

 Hint: Consider balls $B_r(x)$ with $x \in K$.

 b. For each $n \in \mathbb{N}$, define a function $f_n : \mathbb{R} \to \mathbb{R}$ by

 \[f_n(x) = \begin{cases} 1, & n < x < n + 1, \\ 0, & x \leq n \text{ or } x \geq n + 1. \end{cases}\]

 Show that f_n converges pointwise to the zero function on \mathbb{R}, but that f_n does not converge uniformly to the zero function.

 c. Let

 \[x_n = \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{n \cdot 2^n}.\]

 Prove directly from the definition that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R}.

 Remark: You can use without proof, if you like, the fact that $\sum_{k=m+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^m}$.

2. Let $S = \{s_n : n \in \mathbb{N}\}$ be a set of strictly positive real numbers such that $\inf(S) = 0$. Let $A \subset \mathbb{R}^p$. Suppose that $x \in \mathbb{R}^p$ is such that for each $n \in \mathbb{N}$ there exists a point $y_n \in A \setminus \{x\}$ such that $\|x - y_n\| < s_n$. Prove directly from the definition of cluster point that x is a cluster point of A.

 Note: The definition of cluster point is as follows: We say that x is a cluster point of A if for every neighborhood N of x there exists a point $y \in A \cap N$ with $y \neq x$.

3. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence of real numbers with $x_n > 0$ for every n. Show that if $\lim (x_n^{1/n}) > 1$, then $(x_n)_{n \in \mathbb{N}}$ is not convergent.

 Hint: Show that it is not a bounded sequence.
4. Suppose that for each \(n \in \mathbb{N} \) we are given a piecewise continuous function \(f_n : [0, 1] \to \mathbb{R} \), and another piecewise continuous function \(f : [0, 1] \to \mathbb{R} \). Show that if \(f_n \to f \) uniformly, then
\[
\sup_{n \in \mathbb{N}} \| f_n \|_\infty < \infty.
\]
Will it also be true that \(\sup \| f_n \|_1 < \infty \)?

5. Let \(A \) be any subset of \(\mathbb{R}^p \). Let \(A^- \) be the closure of \(A \) and let \(\partial A \) be the boundary of \(A \). Prove that
\[
A^- = A \cup \partial A.
\]
Hint: Prove that \(A \cup \partial A \) is closed.