1. Problem 9 L. If A is any subset of \mathbb{R}^p, let A^- denote the intersection of all closed sets containing A; the set A^- is called the **closure** of A. Note that A^- is a closed set; prove that it is the smallest closed set containing A. Prove that

$$A \subseteq A^-, \quad (A^-)^- = A^-, \quad (A \cup B)^- = A^- \cup B^-,$$

$\emptyset^- = \emptyset$.

Give an example to show that $(A \cap B)^- = A^- \cap B^-$ may not hold.

NOTE: Part of this problem asks you to prove that A^- is the smallest closed set containing A. To do this, you must show that A^- is closed, and that if B is any closed set such that $A \subseteq B$, then $A^- \subseteq B$.

2. Problem 10 G. Show that every point in the Cantor set F is a cluster point of both F and $C(F)$.

3. Problem 11 D. Prove that if K is a compact subset of \mathbb{R}, then K is compact when regarded as a subset of \mathbb{R}^2.

NOTES: The statement “when K is regarded as a subset of \mathbb{R}^2” means that you are to prove that the set

$$K' = \{ (x,0) : x \in K \}$$

is a compact subset of \mathbb{R}^2. Do NOT use the Heine–Borel Theorem in your proof; instead, prove that K' is compact by directly using the definition of compact set.

4. Problem 12 B. If $C \subseteq \mathbb{R}^p$ is connected and x is a cluster point of C, then $C \cup \{x\}$ is connected.