10. Nested Cells & Bolzano-Weierstrass

Definition
A point \(x \in \mathbb{R}^p \) is a cluster point (or accumulation point, or limit point) of \(A \subseteq \mathbb{R}^p \) if

\[
\forall \text{ neighborhood } N \text{ of } x, \exists y \in N \setminus A \text{ s.t. } y \neq x.
\]

That is, to be a cluster point, every neighborhood of \(x \) has to have a point of \(A \) other than \(x \) itself.

This is somewhat similar to, but different from, boundary points.

As with anything involving neighborhoods, it really all comes down to questions about balls.

Exercise
Given \(A \subseteq \mathbb{R}^p \) \& \(x \in \mathbb{R}^p \), prove TFAE.

a. \(x \) is a cluster point of \(A \).

b. \(\forall n \in \mathbb{N} \exists y_n \in A \text{ s.t. } 0 < \|x - y_n\| < \frac{1}{n}. \) (So, points of \(A \) really do "cluster" about \(x \).)
Example: \(A = \{ x \} \) has no cluster points, but it does have a boundary point (\(x \) itself).

Exercise

Consider \(A = \{ \frac{1}{n} : n \in \mathbb{N} \} \)

\[
\frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{3}} \quad \frac{1}{\frac{1}{4}} \quad \frac{1}{\frac{1}{5}} \quad \frac{1}{\frac{1}{6}}
\]

a. Prove that \(x = 0 \) is the only cluster point of \(A \).

b. Prove that \(\bar{A} = A \cup \{ 0 \} \).

d. Show that no boundary points are cluster points.

c. Show that all interior points are cluster points.

d. Give examples showing that if \(x \in A \) and \(x \in \partial A \), then \(x \) may or may not be a cluster point of \(A \).
We can characterize closed sets by their cluster points, just as we did for boundary points.

Exercise

Let $F \subseteq \mathbb{R}^n$ be given. Then

F is closed \iff F contains all its cluster points.

Sketch for \Rightarrow

Suppose F is closed & x is a cluster point.

If $x \notin F$, show that x must be an exterior point, and that this implies it is not a cluster point.
Definition
A set $A \subseteq \mathbb{R}^p$ is bounded if it is contained in some open ball $B_r(x)$.

Exercise
Show A is bounded if and only if $\exists R > 0$ s.t. $\|x\| < R \ \forall x \in A$, or, in other words, $A \subseteq B_R(0)$.
Bolzano-Weierstrass Theorem

Every bounded infinite subset of \(\mathbb{R}^n \) has a cluster point.

Proof:

\(p=1 \)

Let \(B \subseteq \mathbb{R} \) be an infinite bounded set.

Then \(B \subseteq I_1 = [-c, c] \) for some \(c \). Let \(y_1 \) be one point in \(I_1 \).

\[
\begin{array}{c}
I_1 \\
B_L & \rightarrow & B_R \\
-\infty & \rightarrow & \infty
\end{array}
\]

one of these becomes \(I_2 \)

Let \(B_L = \text{left half of } I_1 \), \(B_R = \text{right half of } I_1 \).

End \(\)

Either \(B_L \) contains \(\infty \) many points of \(B \) or \(B_R \) (or both).

Let \(I_2 = \text{one with } \infty \text{ many points of } B \).

\(y_2 = \text{one point in } I_2, y_1 \neq y_2 \).
Repeat.

One half of \(I_2 \) contains \(\infty \) many points of \(B \).

\[I_3 = \text{one half of } I_2 \text{ that contains } \infty \text{ many points of } B \]

\[y_3 = \text{one point of } B \text{ in } I_3, \quad \neq y_1, y_2. \]

Etc.

\[I_1 \supset I_2 \supset I_3 \supset \ldots \text{ nested cells.} \]

If \(y \in \bigcap_{n=1}^{\infty} I_n \) Nested cells property.

Note \(y \in I_1, \quad y \in I_i \quad \Rightarrow \quad ||y - y_i|| < 2r \)

\[y \in I_2, \quad y_2 \in I_2 \quad \Rightarrow \quad ||y - y_2|| < r \]

\[\vdots \]

\[y \in I_n, \quad y_n \in I_n \quad \Rightarrow \quad ||y - y_n|| < \frac{r}{2^{n-2}}. \]

So \(\lim_{n \to \infty} ||y - y_n|| = 0 \).

And \(y \) can only equal at most one \(y_n \).

So \(y \) is a cluster point of \(B \). \(\Box \)
One subsquare becomes I_2, etc.