A.8 Closed and Dense Sets

The smallest closed set that contains a given set is called its closure, defined precisely as follows.

Definition A.57. If E is a subset of a topological space X, then the closure of E, denoted \overline{E}, is the smallest closed set in X that contains E:

$$\overline{E} = \cap \{F \subseteq X : F \text{ is closed and } F \supseteq E\}.$$

If $\overline{E} = X$, then we say that E is dense in X.

Often it is more convenient to use the following equivalent form of the closure of a set.

Exercise A.58. Given a subset E of a topological space X, show that \overline{E} is the union of E and all the accumulation points of E.

There are many different notations and terminology that are commonly used when discussing subspaces of a normed space. In particular, some authors make the restriction that the term "subspace" is reserved to mean a "closed subspace." Other authors use the term "linear manifold" to denote a subspace that need not be closed. To avoid ambiguity, a subspace for us will mean a subspace in the usual vector space sense, i.e., a subset that is closed under both vector addition and scalar multiplication. We will refer to a subspace that is also a closed set as a closed subspace.

The typical method for showing that a subset of a metric space is dense is given in the next exercise.

Exercise A.59. Let X be a metric space, and let $E \subseteq X$ be given. Show that E is dense in X if and only if for each $f \in X$ there exist a sequence $\{f_n\}_{n \in \mathbb{N}}$ in E such that $f_n \to f$.

In a finite-dimensional normed space, every subspace is a closed set. The following exercises illustrate that this need not be the case in infinite dimensions.

Exercise A.60. (a) Fix $1 \leq p \leq \infty$. Prove that

$$c_0^0 = \{x = (x_1, \ldots, x_N, 0, 0, \ldots) : N > 0, x_1, \ldots, x_N \in \mathbb{C}\}$$

is a subspace of ℓ^p that is not closed (with respect to the ℓ^p-norm). Prove that c_0^0 is dense in $\ell^p(\mathbb{N})$ if $p < \infty$, but that it is not dense in ℓ^∞. The vectors in c_0^0 are sometimes called finite sequences because they contain at most finitely many nonzero components.

(b) Define

$$c_0 = \{x = (x_k)_{k=1}^\infty : \lim_{k \to \infty} x_k = 0\}.$$

Prove c_0 is a closed subspace of $\ell^\infty(\mathbb{N})$, and that c_0 is the closure of c_0^0 in the ℓ^∞-norm.
Exercise A.61. Show that the space $C_c(\mathbb{R})$ introduced in equation (A.3) is a dense subspace of $C_0(\mathbb{R})$ that is not closed (under the uniform norm).

The significance of closed subspaces is given in the following exercise.

Exercise A.62. Let M be a subspace of a Banach space X. Then M is itself a Banach space (using the norm inherited from X) if and only if M is closed.

Hence, c_0 is a normed space that is not complete with respect to any norm $\| \cdot \|_p$, $1 \leq p \leq \infty$. Similarly, $C_c(\mathbb{R})$ is a normed space that is not complete with respect to the uniform norm (compare Exercise A.21).

We now introduce a definition that in some sense distinguishes between "small" and "large" infinite-dimensional spaces.

Definition A.63. A topological space that contains a countable dense subset is said to be separable.

Exercise A.64. (a) Show that if I is a finite or countable index set, then $\ell^p(I)$ is separable for $1 \leq p < \infty$. Show that if I is infinite, then $\ell^\infty(I)$ is not separable.

(b) Show that $C_0(\mathbb{R})$ is separable. ← A little tricky.

Additional Problems

A.19. Show that every finite-dimensional subspace of a normed linear space is closed.
A.58 Solution sketch. Let A be the union of E and the accumulation points of E, and suppose that $x \not\in A$. Then x is not an accumulation point of E, so there exists an open neighborhood U of x such that $E \cap (U \setminus \{x\}) = \emptyset$. Since $x \not\in E$, this implies U contains no points of E. Show that U cannot contain any accumulation points of E either, and conclude that $U \subseteq X \setminus A$. Therefore $X \setminus A$ is open, so A is closed, and consequently $E \subseteq A$.

A.64 Hints: (b) Let θ_M be 1 on $[-M, M]$, zero outside $[-M - 1, M + 1]$, and linear on $[-M - 1, -M]$ and $[M, M + 1]$. Use the Weierstrass Approximation Theorem (Theorem A.77) to show that

\[S = \left\{ \sum_{k=0}^{N} r_k x^k \theta_M(x) : M \in \mathbb{N}, N \geq 0, \Re(r_k), \Im(r_k) \in \mathbb{Q} \right\} \]

is countable and dense in $C_0(\mathbb{R})$.
Problem

A.19 Solution sketch. Let M be a finite-dimensional subspace of a normed space X. Suppose that $f_n \in M$ and $f_n \to g \in X$. If $g \notin M$, define

$$M_1 = M + \text{span}\{g\} = \{m + cg : m \in M, c \in \mathbb{C}\}.$$

Show that if $f = m + cg$ with $m \in M$ and $c \in \mathbb{C}$, then $\|f\|_{M_1} = \|m\| + |c|$ is a well-defined norm on M_1. By Theorem A.56, all norms on M_1 are equivalent, so $f_n \to g$ in the norm of M_1. But $\|g - f_n\|_{M_1} = \|f_n\| + 1 \geq 1$ for every n, so this is a contradiction.