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A.10 Complete Sequences

In this section we define complete sequences of vectors in normed spaces. In
finite dimensions, these are simply spanning sets. However, in infinite dimen-
sions there is a subtle, but important, distinction between a complete set and
a spanning set.

Definition A.71 (Span). Let A be a subset of a normed linear space X.
The finite linear span of A, denoted span(A), is the set of all finite linear
combinations of elements of A:

span(A) = {Zakﬁc n>0, fr€d, o€ C}.
k=]

We also refer to the finite linear span of A as the finite span, the linear span,
or simply the span of A.

In particular, if 4 is a countable sequence, say A = {fx}ren, then

span({ fr}ren) = {Zakfk in >0, 01 € C}.

k=1

Ezample A.72. Let e, = (brn)meny = {0,...,0,1,0,0,...) denote the se-
quence which has a 1 in the nth component and zeros elsewhere. Then

span(€) = span({en}rey) = coo.
In particular, the finite span of {e,}nen is not £7 for any p.

Definition A.73 (Closed Span). Let A be a subset of a normed linear
space X. The closed finite span of A, denoted Span(A), is the closure of the
set of all finite linear combinations of elements of A:

span(A)} = span(A) = {z € X : Jy, € span(A) such that y, — z}.

We also refer to the closed finite span of A as the closed linear span or the
closed span of A.

Beware: The definition of the closed span does NOT imply that

. oo
span(4) = {Z opfr: fe € Ao € C} « This need not hold!
]

In particular it is NOT true that an arbitrary element of span(A) can be
written f = Y po; ckfi for some fi € A, ap € C (see Exercise A.78 for a
counterexample). Instead, to illustrate the meaning of the closed span, con-
sider the case of a countable set A = {fi }xen. Here we have
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n
span({ fx tren) = {f € X : Jag,n € C such that Zak,nfk — fasn— oo}.
k=1
That is, an element f lies in the closed span if there exist ay n € € such that

ko
Zak,nfk—rf asn — oo.

k=1

In contrast, to say that f = 2211 oy fr. means that

Zakfk—}f as n — 00, {A.5)

k=1

In particular, in order for equation (A.5) to hold, the scalars o must be
independent of n. This condition is related to the definition of Schauder bases,
which we will consider in more detail in Section ?7, after development of the
Hahn-Banach Theorem.

A complete subset is one whose closed span is the entire space.

Definition A.74 (Complete Sequence). If X is a Banach space then a
subset A € X is complete in X if span(A) is dense in X, Le., if 5pan{4) = X.

There are many other terminologies in use for complete sequences, e.g.,
they are also called total or fundamentol sequences.
Schauder bases are examples of complete sequences.

Definition A.75 (Schauder Basis). A sequence F = {fi}ren in a Banach
space X is a Schauder basis for X if we can write every f € X as

F=> axlf) fx (A.6)
k=1

for a unique choice of scalars e{f), where the series converges in the norm

of X.

In particular, gy = Ek:N=1 a(f) fr belongs to span({fi}rew) for each N,
and gy — f as N — 00, so every f belongs to the closed span of F = { fi }ren.
Thus every Schauder basis is a complete sequence.

Exercise A.76. Let e, = (Smn)men = (0,...,0,1,0,0,...) be as in Exam-
ple A.72. Show that if 1 < p < oo, then {en}nen is a Schauder basis for £7,
and hence is complete in £7,

Show that {e,, }nen is not a Schauder basis for £, but instead is a Schauder
basis for the proper closed subspace cg.
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We refer to £ = {en}nen as the standard basis for £F (p finite) or ¢
(p = o0).

While every Schauder basis is complete, the converse fails in general. We
will next give an example of a complete sequence {fix}ren which does not
have the property that every vector f can be written in the form given in
equation (A.6). For this example we will need the following very useful the-
orem on approximation by polynomials {which we prove in Chapter 1, see
Theorem 1.86). We define the space

Cla,b] = {f: [a, b} —C : f is continuous}, (A7)
which is a Banach space under the uniform norm.

Theorem A.77 (Weierstrass Approximation Theorem). If f € Cla, b]
and & > 0, then there ezists a polynomial p such thot

I =Pl = sup [f(z) —p(=)] < e
TEQ,
Exercise A.78. Use the Weierstrass Approximation Theorem to show that
the set of monomials {z*}22 ) is complete in C[a, b]. However, show that there
exist functions f € Cla,b] which cannot be written as f(z) = Y oo, nz®
with convergence of the series in the uniform norm.

We will explore the distinctions between bases and complete sets in more
detail in Section 77.
Additional Problems

A.22. Let X be a Banach space. Show that if there exists a countable subset
{fa}tnen i X that is complete, then X is separable.




