Definition

\[C_0 = \left\{ x = (x_k)_{k \in \mathbb{N}} : \lim_{k \to \infty} x_k = 0 \right\} \]

\[C = \left\{ x = (x_k)_{k \in \mathbb{N}} : \lim_{k \to \infty} x_k \text{ exists} \right\} \]

Exercises

Let \(e_k = (0, \ldots, 0, 1, 0, 0, \ldots) \) with \(\uparrow k \text{th component} \) be the standard basis vectors and set

\[e_0 = (1, 1, 1, \ldots) \]

a. Prove that \(\{ e_k \}_{k \in \mathbb{N}} \) is a Schauder basis for \(C_0 \). Specifically, show that if

\[x = (x_k)_{k \in \mathbb{N}} \in C_0, \quad \text{then} \]

\[x = \sum_{k=1}^{\infty} x_k e_k, \]

where \(\sum \) series converges in \(\ell^\infty \)-norm, and
Furthermore, this is the unique representation of \(x \) w.r.t. \(\{e_k\}_{k=0}^{\infty} \).

b. Prove that \(\{e_k\}_{k=0}^{\infty} \) is a Schauder basis for \(C \). Specifically, if \(x \in C \) and we set
\[
X_0 = \lim_{k \to \infty} X_k, \quad \text{and} \quad C_k = X_k - X_0, \quad k \in \mathbb{N},
\]
then
\[
X = \sum_{k=0}^{\infty} C_k e_k = X_0 e_0 + \sum_{k=1}^{\infty} (X_k - X_0) e_k
\]
converges in \(\ell^\infty \)-norm and is the unique representation of \(x \) w.r.t. \(\{e_k\}_{k=0}^{\infty} \).
Coordinates

With e_0, e_k as before, set

$\mathcal{E} = \{e_k\}_{k \in \mathbb{N}}, \quad \mathcal{E}' = \{e_k\}_{k \geq 0},$

so that \mathcal{E} is a Schauder basis for c_0 and \mathcal{E}' is a
Schauder basis for c. Since $x = (x_k)_{k \in \mathbb{N}} \in c_0$
can be written in terms of the basis \mathcal{E} as

$x = \sum_{k=1}^{\infty} x_k e_k,$

the coordinates of x w.r.t. the
basis \mathcal{E} are defined to be

$[x]_{\mathcal{E}} = (x_k)_{k \in \mathbb{N}} = (x_1, x_2, \ldots).$

On the other hand, if $x = (x_k)_{k \in \mathbb{N}} \in c_0$,

we express x w.r.t. the basis \mathcal{E}' we write

$x = \sum_{k=0}^{\infty} c_k e_k,$

where $c_0 = x_0 = \lim_{k \to \infty} x_k$

and $c_k = x_k - x_0$ for $k \in \mathbb{N}$. The coordinates

of x w.r.t. \mathcal{E}' are therefore defined to

be
\([X]_{E_1} = (c_k)_{k \geq 0} = (c_0, c_1, c_2, \ldots)\)
\[= (x_0, x_1 - x_0, x_2 - x_0, \ldots)\]

Note that in terms of coordinates w.r.t. \(E_1\),

\(c_0\) is described as

\[c_0 = \{ x \in C : [x]_{E_1} = (0, x_1, x_2, \ldots) \}\]

This gives us another intuitive explanation of why \(\text{dom}(c/c_0) = 1\).
Dual Spaces

The fact that E & E' are Schauder bases for C_0 & C, respectively, suggests how we may characterize their dual spaces.

Warning: Merely knowing that a Banach space X has a particular Schauder basis $\{x_n\}_{n \in \mathbb{N}}$ is not sufficient to yield a characterization of X^*. Something extra is needed to obtain an explicit characterization. What extra do we know about these Schauder bases for C_0 & C?

Exercise

Given $y = (y_k)_{k \in \mathbb{N}} \in l^1$, define

$$
\mu_y : C_0 \to l^1,
$$

$$
\mu_y (\xi) = (\xi y_k)_{k \in \mathbb{N}} \mapsto \sum_{k=1}^{\infty} \xi_k \overline{y_k}.
$$

Show that $\mu_y \in C_0^*$, $\|\mu_y\| = \|y\|_1$, and

$$
T : l^1 \to C_0^*,
y \mapsto \mu_y
$$

is an antilinear isometric isomorphism of l^1 onto C_0^*.
Using the fact that E' is a Schauder basis for C, we can also characterize C^*. Surprisingly, we see that $C^* \cong C^*$ is isometrically isomorphic.

Rather than presenting C^* as Theorem/proof, let us attempt to be somewhat Socratic in approach.

If $x \in C$, then for any $y \in C^*$ we know that

$$
\sum_{k=1}^{\infty} x_k y_k
$$

converges, since $C \subseteq l^\infty$. However, attempting to use \mathbb{R}^C to identify all linear functionals on C is not likely to work — here we are using the standard basis E to express x & y, while we know that E is not a Schauder basis for C.

Instead, let us try to construct functionals based on the fact that $E' = \{e_k\}_{k \geq 0}$ is a Schauder basis for C. Given $x = (x_k)_{k \in \mathbb{N}}$, we should examine the coordinates of x w.r.t. E', namely,

$$
[x]_{E'} = (x_0, x_1 - x_0, x_2 - x_0, \ldots)
$$
\[x_0 = \lim_{k \to \infty} x_k. \] Now, since the series
\[
x = x_0 e_0 + \sum_{k=1}^{\infty} (x_k - x_0) e_k
\]
converges in \(L^\infty \)-norm, if we fix \(\mu \in \mathcal{M} \), then the continuity of \(\mu \) implies that its action on \(x \) will be given by
\[
\langle x, \mu \rangle = x_0 \langle e_0, \mu \rangle + \sum_{k=1}^{\infty} (x_k - x_0) \langle e_k, \mu \rangle. \tag{*}
\]

Exercise: By considering \(x_n = (c_1, \ldots, c_N, 0, 0, 0, \ldots) \), show that
\[
\sum_{k=0}^{\infty} |\langle e_k, \mu \rangle| < \infty.
\]

Therefore, we can rewrite (*) as
\[
\langle x, \mu \rangle = x_0 \left(\langle e_0, \mu \rangle - \sum_{k=1}^{\infty} \langle e_k, \mu \rangle \right) + \sum_{k=1}^{\infty} x_k \langle e_k, \mu \rangle
\]
\[
= \sum_{k=0}^{\infty} x_k \overline{y}_k
\]
where
\[y_0 = \langle e_0, \mu \rangle - \sum_{k=1}^{\infty} \langle e_k, \mu \rangle, \quad y_k = \langle e_k, \mu \rangle, \quad k \in \mathbb{N}. \]

Thus, we are led to associate \(\mu \) with the \(l' \) sequence

\[y_\mu = (y_k)_{k=0}^{\infty} \quad \text{with } y_k \text{ as above.} \]

(Note \(y \) belongs to \(l' = l'(I) \)

where \(I = \{0,1,2,\ldots\} \))

Theorem

\[T: \mathcal{C} \rightarrow l' \] is an antilinear isometric isomorphism.

\[\mu \rightarrow y_\mu \]

Proof

The previous work shows that \(T \) is well-defined, and it is clearly antilinear.

For \(\mu \in \mathcal{C} \), let \(y_\mu \) be defined as above. If \(x \in \mathcal{C} \) then we have \(|x_0| \leq \|x\|_\infty \), so

\[|\langle x, \mu \rangle| = \left| \sum_{k=0}^{\infty} x_k y_k \right| \leq \sum_{k=0}^{\infty} |x_k| |y_k| \leq |x_0| \sum_{k=0}^{\infty} |y_k| \]

Hence \(\|\mu\| \leq \sum_{k=0}^{\infty} \|y_k\| \).

To show equality, for each \(k \geq 0 \) let \(c_k \) be the scalar of unit modulus such that \(c_k y_k = y_k \). Consider the vectors...
\[\chi_N = (c_1, \ldots, c_N, c_0, c_0, c_0, \ldots) \]
\[= c_0 e_0 + \sum_{k=1}^{N-1} (c_k - c_0) e_k. \]

We have \(\chi_N \in C \) and \(\| \chi_N \|_\infty = 1. \)

\[\langle \chi_N, \mu \rangle = c_0 \langle e_0, \mu \rangle + \sum_{k=1}^{N-1} (c_k - c_0) \langle e_k, \mu \rangle \]
\[= c_0 \left(\langle e_0, \mu \rangle - \sum_{k=1}^{N-1} \langle e_k, \mu \rangle \right) + \sum_{k=1}^{N-1} c_k \langle e_k, \mu \rangle \]
\[= c_0 \left(\langle e_0, \mu \rangle - \sum_{k=1}^{N-1} \langle e_k, \mu \rangle \right) + \sum_{k=1}^{N-1} |y_k| \]
\[\rightarrow c_0 y_0 + \sum_{k=1}^{\infty} |y_k| \quad \text{as} \quad N \rightarrow \infty \]
\[= |y_0| + \sum_{k=1}^{\infty} |y_k| \]
\[= \| y_0 \|_1. \]

Hence we do have \(\| y_\mu \|_1 = \| y_0 \|_1. \)

Therefore it only remains to show that \(T \) is surjective.
Given yet, define \(\mu : c \rightarrow F \) by

\[
\langle x, \mu \rangle = \sum_{k=0}^{\infty} x_k \bar{y}_k = x_0 \bar{y}_0 + \sum_{k=1}^{\infty} x_k \bar{y}_k
\]

Exercise: Verify that \(\mu \in c^* \).

Then for \(m \in N \) we have

\[
\langle e_m, \mu \rangle = x_0 \bar{y}_0 + \sum_{k=0}^{\infty} \delta_{mk} \bar{y}_k = \bar{y}_m.
\]

For \(m = 0 \), we have

\[
\langle e_0, \mu \rangle = \bar{y}_0 + \sum_{k=1}^{\infty} \bar{y}_k = \bar{y}_0 + \sum_{k=1}^{\infty} \langle e_k, \mu \rangle,
\]

so

\[
\bar{y}_0 = \langle e_0, \mu \rangle - \sum_{k=1}^{\infty} \langle e_k, \mu \rangle.
\]

Thus \(y_\mu = (y_k)_{k=0}^\infty = \bar{y}_0 \), so \(T \) is surjective.
Thus, we've shown that C^* is isometrically isomorphic to l^1. We did it by deducing what l^1 sequence we should associate with $\mu \in C^*$. This is counter to my first inclination, which is to try to map l^1 to C^*. And now we can see exactly how to do this. Use the same notation as before, i.e., given $x = (x_k)_{k \in \mathbb{N}} \in C$, let $x_0 = \lim_{k \to \infty} x_k$.

While vectors in C are indexed by \mathbb{N}, let us use $N_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, \ldots\}$ for l^1 index set for l^1. Given $y = (y_0)_{k=0}^{\infty} \in l^1 = l^1(\mathbb{N}_0)$ define

$$
\mu_y : C \rightarrow l^1 \rightarrow \sum_{k=0}^{\infty} x_k y_k.
$$

Exercise:
Show directly that $T : l^1 \rightarrow C^*$

$$
T(y) = \mu_y
$$

is an antilinear isometric isomorphism.
Final Thought

In summary, while C_0 is a closed subspace of C and in fact is a hyperplane in C, these two spaces have isometric dual spaces. This leads to the question:

Are C_0 and C isometrically isomorphic?

Acknowledgments

The proof given here that $C^* = l^1$ is based on the proofs given by Lo-Bin Cheng, Ruoting Gong, and Luan Lin on HW #3.