Hints and Solution Sketches for Exercises and Additional Problems

Exercises from Chapter 1

1.8 Hint: The Lebesgue Dominated Convergence Theorem.

1.15 Hint: (c) First prove the result assuming that \(f \in C_c(\mathbb{R}) \), so \(f \) is uniformly continuous. Then use the fact that \(C_c(\mathbb{R}) \) is dense in \(L^p(\mathbb{R}) \) for \(p \) finite to approximate an arbitrary \(L^p(\mathbb{R}) \) function by a function in \(C_c(\mathbb{R}) \).

1.17 Hint: Show that \(|e^{2\pi i \eta x} - 1| \leq \min\{2, 2\pi |\eta x|\} \) (see the “proof by picture” in Figure 1.8). Hence, for any \(x \) we have \(|e^{2\pi i \eta x} - 1| \to 0 \) as \(\eta \to 0 \). For \(p < \infty \), apply the Lebesgue Dominated Convergence Theorem.

1.27 Hints: (a) Here are three approaches, all variations on the same theme.

First, show that
\[
|f \ast g(x)| \leq \int \left(|f(y)| |g(x - y)|^{1/p} \right) |g(x - y)|^{1/p'} \, dy,
\]
and apply Hölder’s Inequality with exponents \(p \) and \(p' \) to the two factors.

Second, recall that
\[
\|f \ast g\|_p = \sup\{ |\langle f \ast g, h \rangle| : \|h\|_{p'} = 1 \}.
\]
Show that
\[
|\langle f \ast g, h \rangle| \leq \int |f(y)| \|T_y g|, |h\| \, dy,
\]
and apply Hölder’s Inequality to \(\langle T_y g|, |h\rangle \).

Third, write out \(\|f \ast g\|_p \) as an iterated integral, and apply Minkowski’s Integral Inequality (Problem 1.18).

(b) Show that
\[
|f \ast g(x)| \leq \int \left(|f(y)|^{p/r} |g(x - y)|^{q/r} \right) |f(y)|^{p(\frac{1}{p} - \frac{1}{r})} |g(x - y)|^{q(\frac{1}{q} - \frac{1}{r})} \, dy,
\]
and apply Hölder’s Inequality for a product of three functions (see Problem B.13) using exponents \(r, p_1, p_2 \), where

\[
\frac{1}{p_1} = \frac{1}{p} - \frac{1}{r}, \quad \frac{1}{p_2} = \frac{1}{q} - \frac{1}{r}.
\]

1.36 Hints: (a) To follow the method of Theorem 1.33, show uniform continuity directly by using Hölder’s Inequality and the fact that translation is strongly continuous on \(L^p(\mathbb{R}) \).

To follow the method of Exercise 1.35, use the fact that \(1 < p < \infty \) implies \(1 < p' < \infty \), and hence \(C_c(\mathbb{R}) \) is dense in both \(L^p(\mathbb{R}) \) and \(L^{p'}(\mathbb{R}) \).

(b) For a counterexample, consider \(g \) identically 1.

1.37 Solution sketch for \(m = 1 \). We have that

\[
\frac{(f * g)(x + h) - (f * g)(x)}{h} = \int f(y) \frac{g(x + h - y) - g(x - y)}{h} \, dy.
\]

The integrand converges pointwise a.e. to \(f(y) g'(x - y) \) as \(h \to 0 \). Use the Mean Value Theorem to show that, as a function of \(y \),

\[
\left| f(y) \frac{g(x + h - y) - g(x - y)}{h} \right| \leq |f(y)| \|g'\|_\infty \in L^1(\mathbb{R}).
\]

Then apply the Lebesgue Dominated Convergence Theorem.

1.45 Hint: Show that if \(\hat{g}(\xi) \neq 0 \) for a.e. \(\xi \) then \(g \notin g * L^1(\mathbb{R}) \) (examples are the Dirichlet function \(d \) or the Gaussian function \(g(x) = e^{-x^2} \)).

1.55 Hint: Use (or prove) the fact that if \(f \in L^1(\mathbb{R}) \) and \(\varepsilon > 0 \), then there exists a \(\delta > 0 \) such that \(\int_E |f| < \varepsilon \) for any measurable \(E \subseteq \mathbb{R}^d \) satisfying \(|E| < \delta \).

1.61 Hint: Apply an argument similar to the one used in Theorem 1.60, using the fact that Theorem 1.56 implies that the Fundamental Theorem of Calculus holds for \(g \) on every interval \([a, b]\).

1.67 Hints: Apply Hölder’s Inequality to

\[
\int |f(x) - f(x - t)||k_\lambda(t)|^{1/p} \cdot |k_\lambda(t)|^{1/p'} \, dt,
\]

or apply Minkowski’s Integral Inequality.

1.68 Hint: Show that

\[
\|f - f * k_\lambda\|_\infty \leq \int \|f - T_\lambda f\|_\infty |k_\lambda(t)| \, dt,
\]

and then split the integral into \(|t| < \delta \) and \(|t| \geq \delta \).
1.69 Hints: For the last part of the problem, by Exercise 1.36 we know that \(f * k_\lambda \) will be uniformly continuous on \(\mathbb{R} \). Show that if \(f * k_\lambda \to f \) uniformly on \(\mathbb{R} \), then \(f \) is uniformly continuous. However, not every element of \(C_0(\mathbb{R}) \) is uniformly continuous, e.g., consider \(f(x) = \sin x^2 \).

1.77 Hints: (a) \(\Rightarrow \) (b). Choose \(f \in J \) and \(g \in L^1(\mathbb{R}) \). If \(f * g \notin J \) then by the Hahn–Banach Theorem there exists \(\varphi \in L^1(\mathbb{R})^* = L^\infty(\mathbb{R}) \) such that \(\langle h, \varphi \rangle = 0 \) for all \(h \in J \) while \(\langle f * g, \varphi \rangle \neq 0 \).

(b) \(\Rightarrow \) (a). Let \(\{k_\lambda\}_{\lambda > 0} \) be an approximate identity, and consider \((T_\alpha f) * k_\lambda \).

1.78 Hints: Show that \(J \) is translation-invariant and hence is an ideal.

For the opposite inclusion, consider \((T_\alpha g) * k_\lambda \) where \(\{k_\lambda\}_{\lambda > 0} \) is an approximate identity.

1.79 Hint: Suppose \(\hat{g}(\xi) = 0 \). Given \(\varepsilon > 0 \), let \(h \in L^1(\mathbb{R}) \) satisfy \(\hat{h}(\xi) = 1 \).

Show that \(h \) cannot be well-approximated by elements of span\(\{T_\alpha g\}_{\alpha \in \mathbb{R}} \).

1.81 Hints: By making a change of variables, using the half-angle formula \(\sin^2 x = \frac{(1 - \cos 2x)}{2} \), and integration by parts, show that

\[
\int w = \int \left(\frac{\sin \pi x}{\pi x} \right)^2 dx = \lim_{R \to \infty} \frac{1}{\pi} \int_{-R}^{R} \frac{\sin x}{x} dx.
\]

Note that while \(\frac{\sin x}{x} \) is not an integrable function, the improper Riemann integral \(\int_0^\infty \frac{\sin x}{x} dx \) does exist and equals \(\frac{\pi}{2} \) (see Problem 1.41).

1.94 Hints: (b) Take the Fourier transform of \(f_k \) and make the change of variables \(\eta = 2\pi k \xi \).

(c) Since \(f_k, \hat{f}_k \in L^1(\mathbb{R}) \), the Inversion Theorem applies.

1.95 Hints: (a) Even though \(\frac{\sin x}{x} \) is not integrable, show that

\[
K = \sup_{0 < a < b < \infty} \left| \int_a^b \frac{\sin x}{x} dx \right| < \infty.
\]

Then use the fact that \(f \) is odd to write \(\hat{f}(\xi) = -2i \int_0^\infty f(x) \sin(2\pi \xi x) dx \).

Substitute this into \(\int_1^b \hat{f}(\xi) d\xi \), and use Fubini’s Theorem to justify interchanging the integrals. Show that \(K \|f\|_1 \) is a bound for the desired supremum.

1.102 Hint: (c) Write \(\Phi(0)^2 = \left(\int e^{-\pi x^2} dx \right) \left(\int e^{-\pi y^2} dy \right) \), and switch to polar coordinates.

1.105 Hint: Break into intervals \(|x| \leq 1 \) and \(|x| > 1 \). For the latter, write \(|f^{(n)}(x)| = |x^2 f^{(n)}(x)|/|x^2| \).
Additional Problems from Chapter 1

1.2 Remark: To say that a function \(f \in L^1(\mathbb{R}) \) is even means that there is an even function \(g \) such that \(f = g \) a.e.

1.4 Hint: Fix \(\xi \) and let \(\alpha = e^{-2\pi i \theta} \) be the complex number of modulus 1 such that \(|\hat{f}(\xi)| = \alpha \hat{f}(\xi) \). Then consider \(\hat{f}(0) - |\hat{f}(\xi)| \).

1.5 Remark. For \(z \notin \mathbb{Z} \), the Gamma function satisfies the functional equation \(\Gamma(z) \Gamma(z-1) \sin \pi z = \pi \). However, \(\sin \pi z \neq 0 \) when \(z \notin \mathbb{Z} \), so \(\Gamma(z) \neq 0 \) for \(z \notin \mathbb{Z} \). Also, for \(z = n \in \mathbb{N} \) we have \(\Gamma(n) = (n-1)! \neq 0 \). Hence \(\Gamma(z) \neq 0 \) for all \(z \) for which it is defined.

1.6 Hint: (c) Apply the Lebesgue Dominated Convergence Theorem to the partial sums of the series.

1.9 Hints: \(\int e^{-2y^2} dy = (\pi/2)^{1/2} \) and \(\int y^2 e^{-2y^2} dy = (\pi/2)^{1/2}/4 \).

1.12 Hint: Set \(f(p) = \ln A_p^2 \) and show that
\[
\begin{align*}
 f(p) &= \frac{(p-1) \ln (p-1) - (p-2) \ln p}{p}, \\
 f'(p) &= \frac{2 - 2\ln p + \ln (p-1)}{p^2}.
\end{align*}
\]
Conclude from this that \(f \) has critical points at
\[
\frac{e^2 \pm e\sqrt{e^2-4}}{2} \approx 1.19243, 6.19662.
\]

1.13 Hint: Consider
\[
\begin{align*}
 f(x) &= \begin{cases}
 \frac{1}{|x|}, & |x| > 1, \\
 1, & |x| \leq 1
 \end{cases}, \\
 g(x) &= \begin{cases}
 \frac{1}{\ln |x|}, & |x| > e, \\
 1, & |x| \leq e
 \end{cases}.
\end{align*}
\]
Then \(f \in L^p(\mathbb{R}) \) for \(p > 1 \) and \(g \in C_0(\mathbb{R}) \), but \((f * g)(x) = \infty \) for every \(x \).

1.20 Hints: (a) Show that \(\chi_E * \chi_{-E} \in C_0(\mathbb{R}) \).

(b) \(E \) cannot have zero measure because \(\cup_{r \in \mathbb{Q}} (E + r) = \mathbb{R} \).

(c) Suppose that \(|A_r| > 0 \), and let \(E \) be as in part (b). Let \(A_r = A \cap (E+r) \) for \(r \in \mathbb{Q} \). Then the \(A_r \) are disjoint sets whose union is \(A \). Use part (b) to show that if \(A_r \) is measurable then it must have measure zero.

1.21 Hint: Set \(F(y) = \int |f(x,y)| \, dx \), and note that \(\|F\|_p \) is the left-hand side of equation (1.18). Write
\[
\|F\|_p^p = \int F(y)^{p-1} F(y) \, dy,
\]
and apply Hölder’s Inequality with exponents \(p' \) and \(p \) to the two factors appearing in the integrand above.
1.24 Hints: (a) Consider a single subinterval \(\{[x, y]\} \) in the definition of absolutely continuity.

(b) To find an absolutely continuous function that is not Lipschitz, consider Exercise 1.55. To find a function of bounded variation that is not absolutely continuous, consider the Cantor–Lebesgue function.

(c) Let \(E = \{(x, y) \in [a, b]^2 : x \leq y\} \). By Fubini’s Theorem, the two iterated integrals

\[
\iint_E f'(x) g'(y) \, dx \, dy = \int_a^b \left(\int_a^y f'(x) \, dx \right) g'(y) \, dy
\]

and

\[
\iint_E f'(x) g'(y) \, dy \, dx = \int_a^b f'(x) \left(\int_x^b g'(y) \, dy \right) \, dx
\]

are equal.

1.26 Hint: (a) Write \(\hat{f}(\xi) = 2 \int_0^{1/2} \cos(6\pi x) \cos(2\pi \xi x) \, dx \), and apply a trigonometric identity to rewrite the integrand as a sum of two cosines. Alternatively, write \(f = \frac{1}{2\pi} \left(M_3 \chi_{[-1/2, 1/2]} + M_{-3} \chi_{[-1/2, 1/2]} \right) \), use the duality between modulation and translation together with Exercise 1.7 to compute \(\hat{f} \), and apply trig identities.

1.27 Let \(g(x) = e^{-x} \chi_{[0, \infty)}(x) \), and observe that \(f'(x) = g(x) - f(x) \).

1.29 Hint: To show \(P \) is unbounded, consider \(f_n = \chi_{[n, n+1]} \). To show \(M \) is unbounded, consider \(f_n(x) = n^{1/p} f(nx) \) for an appropriate \(f \).

1.35 Hint: Consider \(k_\lambda \ast g \).

1.36 Hint: If \(\int k = 0 \), let \(m \in L^1(\mathbb{R}) \) be any function such that \(\int m = 1 \), and consider that both \(\{(k + m)_\lambda \}_{\lambda > 0} \) and \(\{m_\lambda\}_{\lambda > 0} \) are approximate identities.

1.37 Hint: \(g \ast k_\lambda \) belongs to \(g \ast L^1(\mathbb{R}) \).

1.44 Hint: Note that the Inversion Formula is not applicable. Instead, consider the Fourier transform of \(g(x) = (f(x) + f(-x))/2 \) and apply the Uniqueness Theorem.

1.46 Hint: Show that the Inversion Formula applies to \(f(x) = e^{-2\pi |x|} \) (consider Problem 1.1), and that it also applies to \(\chi_{[-1/2, 1/2]} \ast \hat{f} \). Use this to relate the integral in question to \((\chi_{[-1/2, 1/2]} \ast \hat{f})(1/2) \).

1.48 Hint: Suppose that \(\sum_{k=1}^N T_n g = 0 \) a.e. Take the Fourier transform of both sides, and consider the fact that a nontrivial trigonometric polynomial can have only countably many zeros (see Section F.4).

1.49 Hint: Use the Inversion Formula to write \(f(x + h) - f(x) \) as an integral involving \(\hat{f} \), and then estimate the integral by breaking it into the regions where \(|\xi| \leq 1/|h| \) and \(|\xi| > 1/|h| \).
1.52 Hints: (b) Either compute directly, or show that \((T_1 B_n - B_n)\) = \(\hat{B}_n\) and apply the Uniqueness Theorem. Set \(\chi = \chi_{[0,1]}\) and note that \(\hat{\chi}(\xi) = M_{-1/2} d_x(\xi) = e^{-\pi i \xi \sin \frac{\pi}{2}}\).

(c) Use the Inversion Formula to show that the decay of \(\hat{B}_n\) in frequency implies that \(B_n\) must be smooth in the time variable. To show that \(B_n^{(n-1)}\) is piecewise linear, use the relation proved in part (b).

(d) Note that \(\chi(x) = \chi(2x) + \chi(2x - 1)\). Let \(c_0 = c_1 = 1\) and set \(c_k = 0\) for all other \(k\). Show that \((\chi * \chi)(x) = \frac{1}{2} \sum_{k \in \mathbb{Z}} (c * c)_k \chi(2x - k)\), where \(c * c\) is the discrete convolution of the sequence \(c = (c_k)_{k \in \mathbb{Z}}\) with itself (see Definition 1.48). Note that \(c * c\) has only three nonzero terms.

1.54 Hint: Write \(\text{range}(T) = \bigcup_k T(\mathcal{B}_k(0))\), where \(\mathcal{B}_k(0)\) is the open ball in \(X\) of radius \(k\) centered at the origin. If \(\text{range}(T)\) is nonmeager, then some set \(T(\mathcal{B}_k(0))\) must contain an open ball. Apply Lemma C.102 to conclude that \(\text{range}(T)\) contains an open ball.

1.56 Hint: The technique of Exercise 1.102 carries over to complex parameters.

1.58 Hint: Let \(\{\phi_{\lambda}\}_{\lambda > 0}\) be the Gauss kernel. Show that \((f * \phi_{\lambda})(0) = (f * \phi_{\lambda})^{\vee}(0) = (\hat{f} \phi_{\lambda})^{\vee}(0)\), and apply Fatou’s Lemma:

\[
\int_{|\xi| > R} \liminf_{\lambda \to \infty} \hat{f}(\xi) \phi_{\lambda}(\xi) d\xi \\
\leq \liminf_{\lambda \to \infty} \int \hat{f}(\xi) \phi_{\lambda}(\xi) d\xi - \int_{|\xi| \leq R} \hat{f}(\xi) \phi_{\lambda}(\xi) d\xi
\]

1.59 Hint: \(\hat{g}(\xi) = (4\pi \xi)/(1 + 4\pi^2 \xi^2)\).

1.61 Hint: Apply the product rule \((fg)^{(n)} = \sum_{j=0}^{n} \binom{n}{j} f^{(j)} g^{(n-j)}\).

1.62 Hint: Write \(x^m = ((x - y) + y)^m\) and apply the Binomial Theorem.

1.63 Hint: Let \(K \in C_c^\infty(\mathbb{R})\) be such that \(K(0) = 1\), and construct an approximate identity from \(k = K^\vee\).

1.64 Hint: Construct \(f\) so that for each \(k \in \mathbb{N}\) we have \(f(x) = c_k e^{ikx}\) in a small neighborhood of \(k\).