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Summary. The functions f1(x), . . . , fr(x) are refinable if they are combinations
of the rescaled and translated functions fi(2x − k). This is very common in
scientific computing on a regular mesh. The space V0 of approximating functions
with meshwidth h = 1 is a subspace of V1 with meshwidth h = 1/2. These
refinable spaces have refinable basis functions. The accuracy of the computations
depends on p, the order of approximation, which is determined by the degree of
polynomials 1, x, . . . , xp−1 that lie in V0.

Most refinable functions (such as scaling functions in the theory of wavelets)
have no simple formulas. The functions fi(x) are known only through the coeffi-
cients ck in the refinement equation—scalars in the traditional case, r×r matrices
for multiwavelets. The scalar “sum rules” that determine p are well known. We
find the conditions on the matrices ck that yield approximation of order p from
V0. These are equivalent to the Strang–Fix conditions on the Fourier transforms

f̂i(ω), but for refinable functions they can be explicitly verified from the ck.

Mathematics Subject Classification (1991): 65D15

1. Introduction.

A function f(x) is refinable if it satisfies a two-scale equation

(1) f(x) =
N

∑

k=0

ck f(2x− k).

This is a “refinement equation” or “dilation equation.” It is satisfied by splines
f(x), and by finite elements. It is the starting point for the construction of
wavelets (in that theory, f(x) is the scaling function). Equation (1) is also basic
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to the theory of recursive subdivision, where f(x) is the fixed point—the func-
tion that stays invariant at each subdivision step. The choice of the coefficients
c0, . . . , cN controls the properties of f(x). Thus the ck totally govern the effec-
tiveness of the wavelets or the subdivision scheme. We assume a finite number
of coefficients (N finite, f supported on [0, N ]), and we study one property in
particular.

That property is approximation by translates. For wavelets and finite elements
and splines, a known or unknown function is approximated by combinations
∑

bk f(x
h
− k). The asymptotic accuracy of this approximation is decided by

the number of polynomials 1, x, . . . , xp−1 that can be exactly reproduced from
combinations of the translates f(x − k). The approximation error will decrease
like hp, as h → 0. When the functions are piecewise polynomials, the approxi-
mation order p is clear. But in general this number must be determined by the
coefficients ck that produce f(x). We want to compute p from those coefficients.

In the scalar case, when the ck are real or complex numbers, the requirement
is a set of p “sum rules”:

(2)
N

∑

k=0

(−1)k kj ck = 0, j = 0, . . . , p − 1.

The example c0 = c1 = 1 satisfies only the first sum rule (p = 1). For those
coefficients, f(x) is the unit box function—the characteristic function of [0, 1].
Equation (1) says that this box is the sum of two half-boxes. The sum of all
translates is clearly a constant function on the whole line. The error in approx-
imation by translates of f(x) (in other words, by piecewise constant functions),
is O(h) when the meshwidth is h. This confirms the equality between the order
of accuracy (the power of h, which is p = 1) and the number of sum rules. The
precise relation between approximation order and polynomial reproduction has
a large literature.

For cubic splines, the coefficients ck are 1
8
, 4

8
, 6

8
, 4

8
, 1

8
. Those coefficients

satisfy p = 4 sum rules. The refinable function f(x) is a cubic B-spline, and the
error in approximation is O(h4). Splines of any degree p − 1 satisfy p sum rules
and yield pth order accuracy—the approximation error is O(hp). Note that the
sum of coefficients is always c0 + · · · + cN = 2, from integrating both sides of
equation (1) and changing variables:

∫

∞

−∞

f(x) dx =
N

∑

k=0

ck

∫

∞

−∞

f(2x− k) dx =
1

2

N
∑

k=0

ck

∫

∞

−∞

f(x) dx.

If this integral of f(x) is nonzero—as we want and need, to produce at least the
constant function 1 in a stable way from the translates—then

(3)
1

2

N
∑

k=0

ck = 1 or c0 + · · · + cN = 2.

The contribution of this paper is to study the matrix case, when the coefficients
ck are r by r matrices. Then f(x) is a vector-valued function with components
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f1(x), . . . , fr(x). That set of functions is still called refinable. If the translates
fi(x − k) can reproduce the polynomials 1, x, . . . , xp−1, the approximation ac-
curacy is still p. Our question is: What are the sum rules in the matrix case?
We are looking for the conditions on the matrices c0, . . . , cN that determine p.
These conditions are much weaker than a literal extension of (2) from scalars to
matrices.

A previous note [SS1] indicated the correct matrix condition and sketched
the reasoning. Here we give a precise formulation and proof. There is a finite
and constructive test on the ck, and it yields the combinations of fi(x− n) that
produce each power xj for j < p. We will connect those matrix conditions to the
so-called Strang–Fix conditions [SF1], [SF2] on the functions f1(x), . . . , fr(x).
An essential point is that in the refinable case, when we start with matrix coef-
ficients ck rather than functions fi(x) and their translates, the test for accuracy

p becomes constructive and convenient.
We discuss examples, and applications to finite elements. Those are refin-

able! Piecewise polynomial spaces on regular grids are an important source of
examples. The approximation conditions extend to the multidimensional case
x ∈ Rd, where the outstanding reference is [CDM]. The conditions also appear
in the Daubechies–Lagarias analysis of the convergence of the cascade algorithm
[DL], [D], which is used to compute f(x).

A new source of examples is the theory of “multiwavelets” developed by Dono-
van, Geronimo, Hardin, and Massopust [GHM], [DGHM]. By fractal interpola-
tion they created two functions f1 and f2 that satisfy a matrix refinement equa-
tion of the form (1). Those scaling functions lead to two orthogonal wavelets
[DGHM], [SS2], with extra properties that could not be achieved with p = 2
in the scalar case: especially symmetry and short support. (Orthogonality and
symmetry come from further conditions [D], [SN] imposed on the ck.) More
multiwavelets are appearing [SS3], [GL], [P1]. Some of them are piecewise poly-
nomial “finite elements with orthogonality.” It is rather amazing that orthogonal
polynomials (now piecewise) should be undiscovered for so long.

2. Fourier transform and the approximation conditions.

In the scalar case, the Strang–Fix conditions for approximation of order p are
usually applied to the Fourier transform of f(x):

(4) f̂(ω) must have zeros of order p at all ω = 2πn, n 6= 0.

This connects directly to the sum rules, when f(x) is refinable. The Fourier
transform of equation (1) is found to be

(5) f̂(ω) =

(

1

2

N
∑

k=0

ck e−ikω/2

)

f̂(ω/2) = M(ω/2) f̂(ω/2).

Replacing ω by ω/2, the right side reduces further to M(ω/2)M(ω/4) f̂(ω/4).

In the limit of this recursion we find f̂(ω) as an infinite product:
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(6) f̂(ω) =

( ∞
∏

j=1

M(ω/2j)

)

f̂(0) with M(ω) =
1

2

N
∑

k=0

ck e−ikω.

Equation (3) ensures that M(0) = 1. The p sum rules translate directly to a
condition on this trigonometric polynomial M(ω), which has the coefficients 1

2
ck:

(7) M(ω) has a zero of order p at ω = π.

It is straightforward to see how this zero of M(ω) produces the required zeros

of f̂(ω). At ω = 2π, the first factor in the infinite product (6) is M(π) itself. At
every ω = 2πn we write n = 2jq with q odd, and find that the (j + 1)st factor
in the product is M(qπ). By periodicity this is M(π). Then the pth order zero

of M produces the pth order zeros of f̂ required in (4).
The matrix case is not so straightforward. Equation (5) still leads to the infi-

nite product in (6), but convergence for all ω is not automatic [HC]. (Equation
(3) does not become M(0) = identity matrix; we can only expect that an eigen-
value of M(0) equals one.) Condition (4) is changed and therefore condition (7)
must change. With r functions f1, . . . , fr, the approximating order is p if and
only if there exists a superfunction S(x) which achieves that order by itself. That
superfunction is a combination of translates:

(8) S(x) =
s

∑

n=0

r
∑

i=1

ain fi(x − n) yields an
∧

S(ω) that satisfies (4).

The problem has always been: How to find S(x)? In concrete examples, the
answer is often clear (and the order p is clear). For piecewise polynomials, it
frequently happens that S(x) is a spline—created from the r functions fi(x).
Shorter support is the attraction of finite elements and the reason for preferring
r functions. (A single spline is supported on p intervals, and a single scaling
function and orthogonal wavelet are supported on at least 2p−1 intervals—both
inconveniently long in the presence of boundaries.) For nonpolynomial functions
f1, . . . , fr it can be very difficult to implement the superfunction test. We refer
to the deep analysis in [BDR1], [BDR2], [J]. For the refinable case this paper
does not need to work with the superfunction.

Note added in proof : We have just received an excellent paper by Plonka
[P2] that computes and uses the (refinable) superfunction. She also gives a new
formulation of the accuracy condition, through a factorization of the matrix
polynomial M(ω). This is the extension to matrices of the factor (1 + e−iω)p

that produces p zeros at ω = π in the scalar case.
It was spline theory and especially finite element theory that led to conditions

(4) and (8). The question of “refinability” did not arise when these conditions
were established. But it is easy to see that finite element spaces (on a regular
mesh) are indeed refinable. The space V0 spanned by the finite element basis
functions with meshsize h = 1 is invariably a subspace of V1 with meshsize
h = 1/2. Every C1 cubic on unit intervals (to pick a specific example with
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r = 2) is a fortiori a C1 cubic on half-unit intervals. The basis functions f1 and
f2 interpolate y(0) = 1 and y′(0) = 1, respectively, with all other nodal values
set to zero. A suitable combination of translates will produce the cubic B-spline
S(x). These functions are refinable, and the 2 by 2 matrix coefficients ck must
satisfy p = 4 sum rules—but they are not the sum rules in (2).

The property V0 ⊂ V1, refinability of spaces and of basis functions, is surely
important to numerical analysis. It underlies the multigrid method and the
“hierarchical bases” for finite elements and other trial spaces. It allows local
mesh refinement; the mesh can be adapted to the problem. The shorter the
support, the more local and convenient this adaptation will be. We need a way
to determine the order p, when the basis functions arise as solutions of (1). The
solution formula (6) is very rarely useful, and condition (8) becomes virtually
impossible to verify. But refinability overcomes the difficulty. We will find an
equivalent and convenient test on the matrix polynomial M(ω).

3. Eigenvalues and eigenvectors of M(π).

The case p = 1 of this test will be no surprise. Where the scalar requirement
was M(π) = 0, the matrix requirement becomes det M(π) = 0. Thus M(π) is

singular. This is the “zero at π” expected in wavelet theory. It leads to constant
functions in V0 and a vanishing moment for wavelets. The left nullvector u
(which is also a left eigenvector of M(0)) plays a critical role:

(9) uM(0) = u and uM(π) = 0 if and only if
∞
∑

k=−∞

u f(x − k) ≡ constant.

Here u f(x−k) is the dot product u1 f1(x−k)+ · · ·+ur fr(x−k) from row times
column. By exhibiting how to construct a (nonzero) constant function from the
translates of f1, . . . , fr, the order of accuracy is confirmed to be at least p = 1.

Notice that the link from information on M(0) and M(π) to the “first sum
rule” is still correct:

(10) uM(0) = u and uM(π) = 0 if and only if u
∑

c2k = u
∑

c2k+1 = u.

This comes from adding and subtracting the equations

uM(0) =
1

2
u (c0 + c1 + c2 + . . . ) = u,

uM(π) =
1

2
u (c0 − c1 + c2 − . . . ) = 0.

We now indicate the two steps behind statement (9), which is the case p = 1
of our main theorem. First, use the refinement equation to replace f(x) in the
crucial function G0(x):
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(11) G0(x) ≡
∑

k

u f(x − k) =
∑

k

u
∑

`

c` f(2x− 2k − `).

Now separate (11) into “even and odd sums” and apply the assumption (10). The
result of that step is that G0(x) = G0(2x). From this we deduce (not instantly,
and needing hypotheses) that G0(x) is constant and nonzero. This is statement
(9)—the translates of f1, . . . , fr produce a constant function. The converse in(9)
comes (also not instantly) by reversing the argument.

The steps that lead to G0(x) = G0(2x) are simple, and typical of more com-
plicated arguments to follow later. In fact, this is the case j = 0 in equation
(20), which is the kernel of the whole reasoning. Here we rewrite G0(x) in (11)
as

G0(x) =
∑

`

u c2`

∑

k

f(2x− 2k − 2`) +
∑

`

u c2`+1

∑

k

f(2x − 2k − 2` − 1)

=
∑

`

u c2`

∑

k

f(2x− 2k) +
∑

`

u c2`+1

∑

k

f(2x− 2k − 1)

= u
∑

k

f(2x − 2k) + u
∑

k

f(2x− 2k − 1)

= G0(2x).

The higher sum rules naturally involve the derivatives M ′(π),M ′′(π), . . . ,
M (p−1)(π). But in the matrix case they are not a statement that these ma-

trices are singular. Instead, a sequence of vectors y
(j)
0 will enter equations like

uM(0) = u and uM(π) = 0—in fact the first vector y
(0)
0 is u. Here are the

(recursive) requirements on M(0) and M(π):

Theorem 1. Assume f is an integrable solution of the matrix refinement equa-
tion (1) such that the integer translates of f1, . . . , fr are independent. Then f

has accuracy p if and only if there are vectors y
(0)
0 , . . . , y

(p−1)
0 ∈ Cr satisfying

(12) for j = 0, . . . , p − 1:

(12)

j
∑

m=0

(

j
m

)

2m ij−m y
(m)
0 M (j−m)(π) = 0,

j
∑

m=0

(

j
m

)

2m ij−m y
(m)
0 M (j−m)(0) = y

(j)
0 .

The proof of Theorem 1 occupies us through Sections 4 and 5. The only
real inputs are equation (12) and the refinement equation (1). The approach
is to regard (1) as an operator equation F (x) = LF (2x), for a downsampled

Toeplitz operator L. Then (12) implies that L has eigenvalues 1, 1
2 , . . . , ( 1

2 )p−1

with eigenvectors of a special form. Those two steps in (13) and (15) lead to
Gj(x) = 2−j Gj(2x) and eventually to Gj(x) = C xj . The combination Gj(x),

using the row vectors y
(j)
0 in (12), demonstrates how to construct xj from the

translates of f(x).
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Following the proof of Theorem 1, Section 6 illustrates the implementation of
these matrix sum rules. Section 7 shows how the matrix sum rules (12) simplify
in the scalar case to the usual sum rules (2). Our final section is motivated by
the following fact: Theorem 1 requires us to verify that the integer translates
of f1, . . . , fr are independent. In Section 8 we derive a condition directly on
the matrices ck that gives one direction of Theorem 1 without the need to verify
independence. This condition applies even when independence fails. Specifically,
we show that if M(0) = 1

2

∑

ck has 1 as a simple eigenvalue and all other
eigenvalues are strictly less than 1 in absolute value, then the matrix sum rules in
(12) imply accuracy p for f . This leads to further observations of the link between
accuracy and the form of the eigenvectors y(j), and to some open questions.

4. Implications of accuracy.

Our insight into the proof of Theorem 1 follows from transforming the refinement
equation (1) into a two-scale matrix equation LF (2x) = F (x) with infinite
matrices and vectors. L is the doubly infinite matrix given in block form as
Lij = c2i−j :

L =















. . .

· · · c3 c2 c1 c0

· · · c3 c2 c1 c0

· · · c3 c2 c1 c0

. . .















.

Note the double shift between rows. F is a vectorized form of f :

F (x) =

















...
f(x− 1)

f(x)
f(x + 1)

...

















.

Recall that f(x) is itself a column vector: f(x) = (f1(x), . . . , fr(x))
t

. Multiplying
L times F (2x) expresses the refinement equation (1) in the equivalent form

(13) LF (2x) = F (x).

Here and throughout, equalities are interpreted as holding almost everywhere.
Assume now that an integrable scaling function f is given which has accuracy

p. (Existence and uniqueness of solutions to matrix refinement equations is
considered in [HC].) Integrability implies compact support; in fact, supp(f) ⊂

[0, N ]. Accuracy p says there are row vectors y
(j)
k (each of length r) such that

(14)
∑

k

y
(j)
k f(x + k) = xj
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for each j = 0, . . . , p−1. Because f has compact support, the summation over k
in (14) is finite for each x. Let y(j) =

[

· · · y
(j)
0 y

(j)
1 y

(j)
2 · · ·

]

. Then (14) is

y(j) F (x) = xj .

So from (13),

(15) y(j) LF (x) = y(j) F (x/2) = (x/2)j = 2−j y(j) F (x).

Here we insert a crucial assumption—reasonable in applications, required for
wavelets, satisfied by “almost all” refinement equations—that the translates of
f1, . . . , fr are independent. That is,

r
∑

i=1

∑

k

aik fi(x + k) ≡ 0 ⇐⇒ every aik = 0.

In vector form a is an arbitrary infinite row vector:

aF (x) ≡ 0 ⇐⇒ a = 0.

In this case, (15) implies that y(j) is a left eigenvector of L:

y(j) L = 2−j y(j).

Thus, accuracy p implies that L has eigenvalues 1, 1
2 , . . . , ( 1

2 )p−1.

Accuracy implies more: the equation y(j)F (x−`) = (x−`)j imparts structure
to the row vector y(j). We have

∑

k

y
(j)
k+` f(x + k) =

∑

k

y
(j)
k f(x − ` + k) = (x − `)j

=

j
∑

m=0

(

j
m

)

xm (−`)j−m

=

j
∑

m=0

(

j
m

)

(−`)j−m
∑

k

y
(m)
k f(x + k).(16)

Our independence assumption implies that the coefficients of f(x + k) on both
sides of (16) must be equal:

(17) y
(j)
k+` =

j
∑

m=0

(

j
m

)

(−`)j−m y
(m)
k .

In particular, the case k = 0 yields

(18) y
(j)
` =

j
∑

m=0

(

j
m

)

(−`)j−m y
(m)
0 .
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Thus the finite vectors y
(0)
0 , . . . , y

(j)
0 , each with r components, determine the

entire eigenvector y(j). For j = 0, 1, 2 we call these finite vectors u, v, w:

y(0) = [ · · · u u · · · u · · · ],

y(1) = [ · · · v v − u · · · v − ku · · · ],

y(2) = [ · · · w w − 2v + u · · · w − 2kv + k2u · · · ].

We return below to the vectors y
(j)
0 . Now we prove the converse to the above:

Eigenvalues of L combined with prescribed structure for the eigenvectors implies
accuracy. Specifically, assume that f is an integrable solution of the matrix
refinement equation, that the translates of f1, . . . , fr are independent, and that L
has eigenvalues 1, 1

2 , . . . , ( 1
2 )p−1 with corresponding left eigenvectors of the form

(18). Write Gj for the combination of the translates of f1, . . . , fr determined by

the eigenvector y(j):

(19) Gj(x) =
∑

k

y
(j)
k f(x + k) = y(j) F (x).

Then from the refinement equation LF (2x) = F (x) we find

(20) Gj(x) = y(j) LF (2x) = 2−j y(j) F (2x) = 2−j Gj(2x).

When Gj is continuous, this implies immediately that Gj(x) is a multiple of xj .
But this is true even in the discontinuous case, as we now show. We use the
independence of translates hypothesis to ensure that Gj is a nonzero multiple of
xj . In Section 8 we give an alternative hypothesis, directly on the matrices ck,
which also ensures that the multiple is nonzero.

We proceed by induction. For j = 0, (19) and (20) give G0(x + 1) = G0(x)
and G0(x) = G0(2x). The mapping τx = 2x mod 1 from [0, 1) onto itself is
ergodic. Therefore, the Birkhoff Ergodic Theorem [Wal, Theorem 1.14] implies
that there is a constant C such that

(21) G0(x) =
1

n

n−1
∑

k=0

G0(τ
kx) → C a.e. as n → ∞.

Hence G0(x) = C a.e. Our independence assumption implies that C 6= 0. By

scaling the eigenvector u = y
(0)
0 , we can set C = 1, or G0(x) = 1 a.e.

Suppose now that Gm(x) = xm for m = 0, . . . , j − 1. Although Gj is not
1-periodic, there is a functional relation between Gj(x) and Gj(x+1). To derive
this, note from (17) that

y
(j)
k−1 =

j
∑

m=0

(

j
m

)

y
(m)
k .

Therefore,
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Gj(x + 1) =
∑

k

y
(j)
k f(x + 1 + k) =

∑

k

y
(j)
k−1 f(x + k)

=
∑

k

j
∑

m=0

(

j
m

)

y
(m)
k f(x + k) =

j
∑

m=0

(

j
m

)

Gm(x)

= Gj(x) +

j−1
∑

m=0

(

j
m

)

xm = Gj(x) + (x + 1)j − xj .(22)

Set Hj(x) = Gj(x) − xj . Then, by (20) and (22), Hj(x + 1) = Hj(x) and
Hj(x) = 2−j Hj(2x). Therefore, the Birkhoff Ergodic Theorem implies that
there is a constant Cj such that

1

n

n−1
∑

k=0

Hj(τ
kx) → Cj a.e. as n → ∞.

The value of Cj is unimportant here: we simply observe that

1

n

n−1
∑

k=0

Hj(τ
kx) =

2jn − 1

n (2j − 1)
Hj(x)

and that (2jn − 1)/(n (2j − 1)) → ∞ as n → ∞. This means we must have
Hj(x) = 0 a.e., completing the induction.

We have proved:

Theorem 2. Assume f is an integrable solution of the matrix refinement equa-
tion (3) such that the integer translates of f1, . . . , fr are independent. Then f has
accuracy p if and only if L has eigenvalues 1, 1

2
, . . . , ( 1

2
)p−1 with corresponding

left eigenvectors y(0), . . . , y(p−1) satisfying (18) for some y
(0)
0 , . . . , y

(p−1)
0 ∈ Cr.

In this case, there exists a nonzero constant C such that y(j) F (x) = C xj a.e.
for j = 0, . . . , p − 1.

We still must show how the eigenvalue structure equation (18) relates to the
matrix sum rules (12).

5. Form of the eigenvectors.

The vectors y
(0)
0 , . . . , y

(p−1)
0 determine the accuracy. They cannot be arbitrary.

Theorem 3. Given vectors y
(0)
0 , . . . , y

(p−1)
0 ∈ Cr, let (18) define the vectors

y
(j)
k and therefore y(j) for j = 0, . . . , p − 1 and all k. Then y(j) L = 2−j y(j) for

j = 0, . . . , p − 1 if and only if the following two finite equations are satisfied for
j = 0, . . . , p − 1:
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(23)

∑

k

y
(j)
k c2k+1 = 2−j y

(j)
−1 = 2−j

j
∑

m=0

(

j
m

)

y
(m)
0 ,

∑

k

y
(j)
k c2k = 2−j y

(j)
0 .

Proof. Looking at the block structure of L, we rewrite y(j) L = 2−j y(j) as the
infinite set of equations

(24)

∑

k

y
(j)
k+` c2k+1 = 2−j y

(j)
2`−1,

∑

k

y
(j)
k+` c2k = 2−j y

(j)
2` ,

` ∈ Z.

The equations in (23) are the particular case of (24) where ` = 0. So, we need
only prove that if (24) is true when ` = 0 then it is true for all `.

We proceed by induction on j. For j = 0, (24) simplifies dramatically since

y
(0)
k = y

(0)
0 for all k. In fact, (24) becomes

∑

k

y
(0)
0 c2k+1 = y

(0)
0 ,

∑

k

y
(0)
0 c2k = y

(0)
0 ,

which has no dependence on `, and equals (23) with j = 0.
Now suppose that (23) is valid for 0 ≤ j ≤ n − 1. We show that the first

equation in (24) is valid for j = n and all ` ∈ Z as follows. Using the induction
hypothesis, we compute:

∑

k

y
(n)
k+` c2k+1 =

∑

k

n
∑

m=0

(

n
m

)

(−`)n−m y
(m)
k c2k+1 by (17)

=
n

∑

m=0

(

n
m

)

(−`)n−m
∑

k

y
(m)
k c2k+1

=
n

∑

m=0

(

n
m

)

(−`)n−m 2−m y
(m)
−1 by (23)

= 2−n
n

∑

m=0

(

n
m

)

(−2`)n−m y
(m)
−1

= 2−n y
(n)
2`−1. by (17)

An analogous computation shows that the second equation in (24) holds for
j = n and all ` ∈ Z, and finishes the proof. �
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For j = 0, 1, 2, the equations in (23) have the form:

∑

k

u c2k+1 = u,
∑

k

u c2k = u,

∑

k

(v − ku) c2k+1 =
1

2
(v + u),

∑

k

(v − ku) c2k =
1

2
v,

∑

k

(w − 2kv + k2u) c2k+1 =
1

4
(w + 2v + u),

∑

k

(w − 2kv + k2u) c2k =
1

4
w.

The summations over k are all finite.
Now that we have reduced accuracy to a finite system of finite equations, we

can reformulate it to resemble the scalar sum rules (2). For simplicity, introduce
the following alternating and non-alternating sums of the matrices ck:

Aj =
N

∑

k=0

(−1)k kj ck and Sj =
N

∑

k=0

kj ck.

In terms of the symbol M(ω) = 1
2

∑

ck e−ikω, these are:

Aj =
2

(−i)j
M (j)(π) and Sj =

2

(−i)j
M (j)(0).

Then we obtain the following result, which, when combined with Theorem 2,
proves Theorem 1. Note that the matrix sum rules given by (25) are the same
as those given by (12), except that they are stated in terms of Aj and Sj instead

of M (j)(π) and M (j)(0).

Theorem 4. Given the vectors y
(0)
0 , . . . , y

(p−1)
0 , let (18) define the vectors y

(j)
k

and therefore y(j) for j = 0, . . . , p − 1 and all k. Then y(j) L = 2−j y(j) for
j = 0, . . . , p − 1 if and only if the following two finite equations are satisfied for
j = 0, . . . , p − 1:

(25)

j
∑

m=0

(

j
m

)

2m (−1)j−m y
(m)
0 Aj−m = 0,

j
∑

m=0

(

j
m

)

2m (−1)j−m y
(m)
0 Sj−m = 2 y

(j)
0 .

Proof. We must show that (23) and (25) are equivalent. For convenience of
notation, define the sums

(26)

Ej =
∑

k

j
∑

m=0

(

j
m

)

2m (−2k)j−m y
(m)
0 c2k,

Oj =
∑

k

j
∑

m=0

(

j
m

)

2m (−2k − 1)j−m y
(m)
0 c2k+1,
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so that the left-hand side of the first equation in (25) is Ej−Oj, and the left-hand
side of the second equation in (25) is Ej + Oj .

Assume now that (23) holds for each j = 0, . . . , p − 1. To show that (25)

holds, we only have to show that Ej = Oj = y
(j)
0 . First, note that if 0 ≤ m ≤ j

and 0 ≤ ` ≤ j − m then

(27)

(

j
` + m

) (

` + m
m

)

=

(

j
m

)(

j − m
`

)

.

Using this, the binomial theorem, and equations (18) and (23), we then compute:

Ej =
∑

k

j
∑

m=0

(

j
m

)

2j (−k)j−m y
(m)
0 c2k by (26)

= 2j
∑

k

y
(j)
k c2k by (18)

= y
(j)
0 by (23)

=

j
∑

`=0

(

j
`

)

(−1)j−` y
(`)
−1 by (17)

=

j
∑

`=0

(

j
`

)

(−1)j−` 2`
∑

k

y
(`)
k c2k+1 by (23)

=
∑

k

j
∑

`=0

(

j
`

)

(−1)j−` 2`
∑̀

m=0

(

`
m

)

(−k)`−m y
(m)
0 c2k+1 by (18)

=
∑

k

j
∑

m=0

j
∑

`=m

(

j
`

)

(−1)j−` 2`

(

`
m

)

(−k)`−m y
(m)
0 c2k+1

=
∑

k

j
∑

m=0

j−m
∑

`=0

(

j
` + m

)

(−1)j−`−m 2`+m

(

` + m
m

)

(−k)` y
(m)
0 c2k+1

=
∑

k

j
∑

m=0

(

j
m

)

(−1)j−m 2m

j−m
∑

`=0

(

j − m
`

)

(2k)` y
(m)
0 c2k+1 by (27)

=
∑

k

j
∑

m=0

(

j
m

)

(−1)j−m 2m (2k + 1)j−m y
(m)
0 c2k+1

= Oj by (26).
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Now we show the converse implication. Assume that (25) holds for each
j = 0, . . . , p − 1. By adding and subtracting the two equations in (25) we see

that Ej = Oj = y
(j)
0 . Applying (18) and (26), we therefore have

2j
∑

k

y
(j)
k c2k =

∑

k

j
∑

m=0

(

j
m

)

2j (−k)j−m y
(m)
0 c2k

=
∑

k

j
∑

m=0

(

j
m

)

2m (−2k)j−m y
(m)
0 c2k

= Ej

= y
(j)
0 ,

giving the second equation in (23).

Before proving the first equation in (23), note that

(28)

j
∑

`=m

(

j
`

)(

`
m

)

(−1)`−m =

{

0, m = 0, . . . , j − 1,

1, m = j.

Therefore,

2j
∑

k

y
(j)
k c2k+1 =

j
∑

m=0

2m

j
∑

`=m

(

j
`

)(

`
m

)

(−1)`−m
∑

k

y
(m)
k c2k+1 by (28)

=

j
∑

`=0

(

j
`

)

∑̀

m=0

(

`
m

)

(−1)`−m 2m
∑

k

y
(m)
k c2k+1

=

j
∑

`=0

(

j
`

)

O` by (26)

=

j
∑

`=0

(

j
`

)

y
(`)
0

= y
(j)
−1. by (18)

This gives the first equation in (23). �

The coefficients in the equations on the left-hand side of (25) are easy to
remember: they are the coefficients in the binomial expansion of (2a − b)j . For
j = 0, 1, 2, the equations in (25) have the form:
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(29)

uA0 = 0, u S0 = 2u,

2 v A0 − uA1 = 0, 2 v S0 − uS1 = 2 v,

4w A0 − 4 v A1 + uA2 = 0, 4w S0 − 4 v S1 + uS2 = 2w.

6. Examples.

To illustrate how the “matrix sum rules” given by (12) or (25) apply, we check a
case where we know beforehand what the result must be: a cubic finite element
with p = 4 from [SS3]. This matrix refinement equation is specified by

c0 =

[

1/2 3/4
−1/8 −1/8

]

, c1 =

[

1 0
0 1/2

]

, c2 =

[

1/2 −3/4
1/8 −1/8

]

.

The corresponding scaling functions f1 and f2 are shown in Figure 1.

1 2

-1

0

1

1 2

-0.5

0

0.5

Fig. 1. Cubic finite element scaling functions f1 and f2

We begin by computing the matrices Aj and Sj :

A0 =

[

0 0
0 −3/4

]

, S0 =

[

2 0
0 1/4

]

,

A1 =

[

0 −3/2
1/4 −3/4

]

, S1 =

[

2 −3/2
1/4 1/4

]

,

A2 =

[

1 −3
1/2 −1

]

, S2 =

[

3 −3
1/2 0

]

,

A3 =

[

3 −6
1 −3/2

]

, S3 =

[

5 −6
1 −1/2

]

.

Now we simply proceed through the equations in (25) in turn. In terms of u,
v, w, and a fourth vector x, these can be rewritten as four simultaneous matrix
equations, each dependent on the solution of the preceding one:
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{

uA0 = 0,

u (S0 − 2 I) = 0,
(30)

{

v (2A0) = uA1,

v (2S0 − 2 I) = uS1,
(31)

{

w (4A0) = v (4A1) − uA2,

w (4S0 − 2 I) = v (4S1) − uS2,
(32)

{

x (8A0) = w (12A1) − v (6A2) + uA3,

x (8S0 − 2 I) = w (12S1)− v (6S2) + uS3.
(33)

Equation (30) has the unique solution, up to normalization, of u = [ 1 0 ]. With
this value for u, equation (31) has the unique solution v = [ 1 1 ]. Note that
there is now no choice for the normalization for v—it is fixed by the normalization
of u. Proceeding to the next level, the system (32) has the unique solution
w = [ 1 2 ]. Applying these values for u, v, w to (33) gives the final solution
x = [ 1 3 ]. The fact that (30)–(33) are solvable implies that the accuracy is at
least p = 4. The next system is not solvable, so in fact the accuracy is exactly
p = 4. Moreover, the values of u, v, w, x tell us exactly how to construct
the eigenvectors y(0), y(1), y(2), y(3), and hence give the coefficients needed to
reconstruct the polynomials 1, x, x2, and x3 from translates of f1 and f2.

To be precise, to conclude accuracy from Theorems 2 and 4 we must know that
the translates of f1 and f2 are independent. However, in Section 8 we show that
the accuracy conclusion follows without needing to prove independence, simply
because the matrix

∆ = M(0) =
1

2
(c0 + c1 + c2) =

[

1 0
0 1/8

]

has eigenvalues λ1 = 1 and λ2 = 1/8 < 1.

7. Reduction in the scalar case.

When the matrices ck are simply scalars, the matrix sum rule equations in (25)
simplify to the usual scalar sum rules (2), which are themselves simply the con-
ditions A0 = · · · = Ap−1 = 0. For simplicity, we show this just for j = 0, 1, 2
with the u, v, w notation.

Begin with (29). We must have u 6= 0 since y(0) = [ · · · u u u · · · ] must
be nontrivial. Then (29) implies
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(34)

A0 = 0, S0 = 2,

A1 = 0, v =
uS1

2
,

A2 = 0, w =
4 v S1 − uS2

6
.

Thus accuracy implies S0 =
∑

ck = 2 and the sum rules A0 = · · · = Ap−1 = 0.
Moreover, the numbers v, w are completely determined by u. Thus, up to
normalization, the eigenvector y(j) for the eigenvalue ( 1

2
)j for L is completely

determined.
Conversely, start with S0 =

∑

ck = 2 and sum rules A0 = · · · = Ap−1 = 0.
The extra equations in (34) are uniquely solvable for v, w. This in turn gives
(29) and hence accuracy. So for the scalar case, accuracy reduces merely to
a question of sum rules, or, equivalently, eigenvalues of L. The eigenvector
structure is necessarily determined. In summary:

Theorem 5. Assume f is an integrable solution of the scalar refinement equa-
tion (r = 1), such that the integer translates of f are independent. Then f has
accuracy p if and only if

∑

ck = 2 and the scalar sum rules (2) hold.

In the following section, we see that the independence hypothesis in Theorem 5
can be dropped in one direction: the assumption

∑

ck = 2 together with the
scalar sum rules (2) is sufficient to imply accuracy.

8. Independence of translates.

In this section we consider the hypothesis in Theorems 1–5 that the translates of
f1, . . . , fr be independent. We find that, in one direction at least, this hypothesis
can be replaced by a direct condition on the matrices ck.

Consider again the discussion in Section 4 which led to Theorem 2. Begin
with the assumption that eigenvectors y(0), . . . , y(p−1) exist with internal struc-
ture prescribed by (18). From this, we proved that f1, . . . , fr had accuracy p if
the integer translates of these functions were independent. We used this inde-
pendence hypothesis at only one point: to prove that the constant C appearing
in (21) was nonzero. Now we give alternative hypotheses that also imply that C
is nonzero. These hypotheses hold for any matrix refinement equation of current
practical interest. Specifically, we require that the matrix ∆ = M(0) = 1

2

∑

ck

satisfy:

(H1) ∆∞ = limn→∞ ∆n exists,
(H2) 1 is an eigenvalue of ∆, with multiplicity 1.

Hypothesis (H1) is the natural extension to the matrix case of the scalar
requirement (3) that

∑

ck = 2, i.e., ∆ = M(0) = 1. (H1) implies that the
infinite matrix product

∏

∞

j=1 M(ω/2j) converges uniformly on compact sets to a

continuous function [HC]. This means that f̂ is determined, just as in the scalar
case (6), by this infinite product:
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f̂(ω) =

( ∞
∏

j=1

M(ω/2j)

)

f̂(0).

Note then that f̂(0) = ∆∞ f̂(0). Therefore ∆ f̂(0) = ∆∆∞ f̂(0) = f̂(0), i.e.,

f̂(0) is a right 1-eigenvector for ∆.
This assumption that ∆∞ exists means that the Jordan canonical form of ∆

looks in block form like

(35) ∆ ∼

[

Is 0
0 J

]

,

where Is is an s × s identity matrix with 0 ≤ s ≤ r and J has all eigenvalues
strictly less than 1 in absolute value. We know that f̂(0) must be a right 1-
eigenvalue for ∆, so s ≥ 1, and hypothesis (H2) simply states that s = 1. This
ensures that at most one integrable solution to the matrix refinement equation
can exist up to normalization by scalar multiples—in other words, f is unique
[HC]. Thus (H1) and (H2) together simply state that 1 is a simple eigenvalue for
∆ and all other eigenvalues are less than 1 in absolute value.

Hypotheses (H1) and (H2) are tied to the constant C as follows. We know by
the argument in Section 4 that

C = G0(x) =
∑

k

y
(0)
k f(x + k) =

∑

k

u f(x + k) a.e.

Hence,

C =

∫ 1

0

G0(x) dx = u
∑

k

∫ 1

0

f(x + k) dx = u

∫

∞

−∞

f(x) dx = u f̂(0),

where integrals
∫ b

a
f(x) dx are performed componentwise. Hence, we need only

show that (H1) and (H2) imply that u f̂(0) 6= 0. We have seen already that

f̂(0) is a right 1-eigenvector for ∆. The left 1-eigenvector is u! For, we have
assumed that y(0) is a left 1-eigenvector for the infinite matrix L with structure
given by (18), so by Theorem 4—which was proven without any independence
hypotheses—we know that equation (25) must hold for j = 0, . . . , p−1. Included
in this is the statement that uS0 = 2u; by definition, S0 =

∑

ck = 2∆.

Thus u and f̂(0) are left and right 1-eigenvectors, respectively, for ∆. But the
fact that ∆ has the block form (35) with s = 1 ensures that the inner product
of these left and right eigenvectors must be nonzero.

We have proved the following.

Theorem 6. Assume f is an integrable solution of the matrix refinement equa-
tion (1) and suppose that the matrix ∆ = 1

2

∑

ck satisfies (H1) and (H2). If

there are vectors y
(0)
0 , . . . , y

(p−1)
0 ∈ Cr satisfying the matrix sum rules (12) or

(25) for j = 0, . . . , p − 1, then f has accuracy p.
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Note that hypotheses (H1) and (H2) are always satisfied in the scalar case
(r = 1) because ∆ is then just the number 1. Therefore, the scalar result
(Theorem 5) can be simplified in one direction: If

∑

ck = 2 and the scalar sum
rules (2) hold for j = 0, . . . , p − 1 then the accuracy will be p, without the need
for the independence hypothesis. Moreover, because of the simplifications that
occur in (25) for the scalar case, this says that, in the scalar case, the mere
existence of eigenvalues 1, 1

2 , . . . , ( 1
2 )p−1 for L is sufficient to ensure accuracy

p, without the need to assume that the eigenvectors y(0), . . . , y(p−1) have the
structure specified by (18).

This fact does not carry over to the matrix case. Set

c0 =

[

1 0
0 1/2

]

, c1 =

[

1 0
0 1/2

]

.

Then the infinite matrix L has both 1 and 1/2 as eigenvalues. However, the
solution to the corresponding matrix refinement equation is

f =

[

f1

f2

]

=

[

χ
[0,1]

0

]

,

which only has accuracy p = 1.
Because the matrix ∆ for this example does satisfy (H1) and (H2), the trouble

must be that the eigenvector y(1) does not satisfy (18). In fact,

y(0) = [ · · · u u u · · · ],

y(1) = [ · · · t t t · · · ],

with u = [ 1 0 ] and t = [ 0 1 ], while (18) requires y
(1)
k = v − ku for some v.

Equivalently, the matrix sum rules (25) hold for j = 0, but not for j = 1.
The translates of f1 and f2 in this example are not independent. This leads

to the following question.

Problem. Assume f is an integrable solution of the matrix refinement equa-
tion (1) such that the integer translates of f1, . . . , fr are independent. If L has
eigenvalues 1, 1

2 , . . . , ( 1
2 )p−1, must f have accuracy p? In other words, must the

matrix sum rules (25) be satisfied for each j = 0, . . . , p − 1?
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