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Complex-valued functions f1, . . . , fr onR
d are refinable if they are linear combi-

nations of finitely many of the rescaled and translated functions fi(Ax−k), where
the translates k are taken along a lattice Γ ⊂ R

d and A is a dilation matrix that

expansively maps Γ into itself. Refinable functions satisfy a refinement equation

f(x) =
∑

k∈Λ ck f(Ax− k), where Λ is a finite subset of Γ , the ck are r × r ma-

trices, and f(x) = (f1(x), . . . , fr(x))T. The accuracy of f is the highest degree p

such that all multivariate polynomials q with degree(q) < p are exactly reproduced
from linear combinations of translates of f1, . . . , fr along the lattice Γ . In this pa-

per, we determine the accuracy p from the matrices ck. Moreover, we determine
explicitly the coefficients yα,i(k) such that xα =

∑r
i=1

∑
k∈Γ yα,i(k) fi(x + k).

These coefficients are multivariate polynomials yα,i(x) of degree |α| evaluated at
lattice points k ∈ Γ . c©1998 Academic Press
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Key Words and Phrases: Accuracy; approximation by translates; dilation equa-

tions; dilation matrix; multidimensional refinable functions; multidimensional
wavelets; multiwavelets; refinement equations; refinable functions; shift invariant
spaces; wavelets.

5



6 CABRELLI, HEIL, AND MOLTER

1. INTRODUCTION

Let Γ be a lattice in R
d, i.e., Γ = {m1u1 + · · · + mdud : mi ∈ Z}

is the collection of integer linear combinations of d independent vectors
u1, . . . , ud ∈ R

d. Equivalently, Γ is the image of Zd under some nonsingular
linear transformation.

A dilation matrix associated with Γ is a d× d matrix A such that

(a) A(Γ ) ⊂ Γ , and

(b) A is expansive; i.e., all eigenvalues satisfy |λk(A)| > 1.

Since Γ = W (Zd), where W is the invertible matrix with u1, . . . , ud as
columns, the matrix W−1AW maps Zd into itself. Therefore W−1AW has
integer entries and integer determinant. Hence A has integer determinant as
well. We set m = | det(A)|. By applying the similarity transform W−1AW ,
it is always possible to take Γ = Z

d if desired.

Complex-valued functions f1, . . . , fr on R
d are refinable with respect to

A and Γ if they equal linear combinations of the rescaled and translated
functions fi(Ax− k), where the translates k are taken along the lattice Γ .
We shall only consider the case where each fj is obtained as a finite linear
combination of the fi(Ax − k). In this case, the vector-valued function
f :Rd → C

r defined by f(x) = (f1(x), . . . , fr(x))
T satisfies a refinement

equation, dilation equation, or two-scale difference equation of the form

f(x) =
∑

k∈Λ

ck f(Ax− k) (1.1)

for some finite Λ ⊂ Γ and some r × r matrices ck. The one-dimensional
case (d = 1) with A = m integer and a single function (r = 1) leads

to the familiar equation f(x) =
∑N

k=0 ck f(mx − k). This is the starting
point for the construction of orthogonal or biorthogonal wavelet bases for
L2(R) [Dau92] and for the analysis of subdivision schemes [CDM91], most
often with m = 2. The multidimensional case (d > 1) with a single func-
tion (r = 1) leads to multidimensional wavelet bases for L2(Rd) [GM92],
[KV92], [Mey92], [CD93]. The one-dimensional case (d = 1) with multiple
functions (r > 1) leads to multiwavelet bases for L2(R) [GLT93], [GHM94],
[DGHM96], [SS94].

In this paper we study the general multidimensional, multifunction case
(d ≥ 1, r ≥ 1) with an arbitrary dilation matrix A. We seek to determine
one fundamental property of a refinable f based on the coefficients ck. That
property is the accuracy of f , the largest integer p such that all multivariate
polynomials q(x) = q(x1, . . . , xd) with deg(q) < p lie in the shift-invariant
space
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S(f) =

{

∑

k∈Γ

r
∑

i=1

bk,i fi(x+ k) : bk,i ∈ C

}

=

{

∑

k∈Γ

bkf(x+ k) : bk ∈ C
1×r

}

, (1.2)

where C
1×r is the space of row vectors of length r. As usual, equality of

functions is interpreted as holding almost everywhere (a.e.). We shall deal
only with compactly supported functions fi, in which case each series in
(1.2) is well-defined for all choices of bk,i. There is a large literature on
the connection between accuracy and order of approximation; we refer the
reader to the survey papers [deB90], [Jia95] and the references therein.

The space S(f) is called a principal shift-invariant (PSI) space if r = 1,
and a finite shift-invariant (FSI) space if r > 1. We shall therefore refer to
r = 1 as the PSI case, and to r > 1 as the FSI case. In wavelet theory,
the space V0 = S(f) ∩ L2(Rd) plays a special role. The dilated spaces
Vj = {g(Ajx) : g ∈ V0} are nested, due to the refinement equation. With
appropriate conditions on the matrices ck, the spaces Vj together with the
functions fi form a multiresolution analysis, which leads then to a wavelet
basis for L2(Rd).

For arbitrary (not necessarily refinable) functions, the celebrated Strang–

Fix conditions determine when polynomials are reproduced by translates
[SF73]. It is known that for the case of a single, one-dimensional refinable
function (d = 1, r = 1), the Strang–Fix conditions are computable from
the scalars ck. For example, if A = 2, Γ = Z, and Λ ⊂ {0, . . . , N}, the
requirement for f to have accuracy p is (assuming proper hypotheses) the
following set of “sum rules”:

N
∑

k=0

ck = 2 and

N
∑

k=0

(−1)k kj ck = 0 for j = 0, . . . , p− 1. (1.3)

The sum rules are often stated in an equivalent “zero at 1/2” form based on

the symbol M(ω) = 1
2

∑N
k=0 ck e

−2πikω of the refinement equation, namely,

M(0) = 1 and M (j)(1/2) = 0 for j = 0, . . . , p− 1. (1.4)

These sum rules imply that the symbol factorizes in the form M(ω) =
(1 + e−2πiω)p R(ω).

Analogues of the sum rules for the one-dimensional FSI case (d = 1,
r ≥ 1) with A = 2 were recently derived independently by Heil, Strang,
and Strela [HSS96], [SS94] and by Plonka [Plo97]. These “matrix sum
rules” are recursive, and are much weaker than a literal extension of (1.3)
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from scalars to matrices. Working in the frequency domain, Plonka fur-
ther obtained a fundamental factorization of the now matrix-valued symbol

M(ω) = 1
2

∑N
k=0 ck e

−2πikω. This factorization has since led to new results
on the construction of multiwavelets in one dimension [CDP97], [PS98].

Our primary goal in this paper is the elucidation of the conditions for
accuracy of f in terms of a finite system of finite linear equations on the
coefficients ck, for the general higher-dimensional, multifunction case with
an arbitrary dilation matrix, for the purpose of providing a base from which
a future search for practical, nonseparable higher-dimensional multiwavelet
systems for image analysis can be launched. A secondary goal is to present
results which are interesting in the context of approximation theory. Of
course, in this secondary context the reader will recognize that the classic
counterexample of de Boor and Höllig shows that polynomial accuracy is
only a weak concept. However, a complete discussion of the exact rela-
tions between our results on accuracy and analogous results on order of
approximation would lengthen our paper to the point of unwieldiness. We
therefore leave to the interested reader the pursuit of these connections. In
particular, the reader who is expert in the literature of the de Boor school
of approximation theory will recognize that a skillful extraction and combi-
nation of results from papers such as [BR92], [BDR94a], [BDR94b] can be
used to construct alternative proofs of some of our results, and to formu-
late these results in terms of order of approximation. However, our results
are distinct from those appearing in the literature, and we believe that our
direct, straightforward, and self-contained proofs provide additional direct
insight into the understanding of accuracy and the corresponding structure
of translates.

The generalization of accuracy results from one to higher dimensions
is nontrivial. We present now in this introduction a brief review of the
one-dimensional theorems from [HSS96], [Plo97], and [JRZ97], in order to
provide context and motivation for our results. When d = 1, the lattice Γ
is simply a multiple of the integer lattice. It therefore suffices to consider
Γ = Z. In this case, A is an integer, and there is essentially no loss of
insight by taking A = 2. Instead of dealing with the functions f1, . . . , fr
directly, it is usually much more convenient to consider the vector-valued
function f(x) = (f1(x), . . . , fr(x))

T, and to refer to properties of f rather
than the individual fi.

A key tool in the analysis of accuracy is the bi-infinite matrix L with
block entries c2i−j , i.e., L = [c2i−j ]i,j∈Z. Note that L is a “downsampled
Toeplitz operator”—there is a double shift between rows. If we define the
infinite column vector

F (x) = (. . . , f(x− 1), f(x), f(x+ 1), . . . )T,
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then the refinement equation f(x) =
∑

k∈Z
ck f(2x−k) is equivalent to the

equation F (x) = LF (2x).

Suppose now that f has accuracy p. Then the pmonomials 1, x, . . . , xp−1

can be exactly reproduced from integer translates of f = (f1, . . . , fr)
T.

Hence there exist 1× r row vectors ysk = (ysk,1, . . . , y
s
k,r) such that

xs =
∑

k∈Z

r
∑

i=1

ysk,i fi(x+ k) =
∑

k∈Z

ysk f(x+ k), 0 ≤ s < p. (1.5)

If we define the infinite row vector

Ys = ( . . . , ys−1, ys0, ys1, . . . ),

then (1.5) reads

xs = Ys F (x), 0 ≤ s < p.

Applying the refinement equation F (x) = LF (2x), we therefore have

Ys LF (x) = Ys F (x/2) = (x/2)s = 2−s xs = 2−s Ys F (x). (1.6)

With appropriate hypotheses on f (namely, that integer translates of f
are independent), it follows from (1.6) that Ys L = 2−s Ys, and therefore
that Ys is a left eigenvector for L for the eigenvalue 2−s. Thus accuracy
implies (with hypotheses) that the infinite matrix L has left eigenvalues
1, 2−1, . . . , 2−(p−1). It is shown in [HSS96] and [Plo97] that these eigenvec-
tors Ys have a special structure: there exist p row vectors v0, . . . , vp−1 that
completely determine the vectors ysk via a simple formula. These p vectors,
in turn, can be found by solving a finite system of linear equations. These
equations are the “matrix sum rules.” They have a block triangular form:
equation s involves only v0, . . . , vs. It is also shown in [HSS96] and [Plo97]
that the existence of eigenvalues 1, 2−1, . . . , 2−(p−1) for L with eigenvectors
possessing the above-mentioned structure is essentially a necessary and suf-
ficient condition for f to have accuracy p.

In [JRZ97], Jia, Riemenschneider, and Zhou realized that this structure
was of a polynomial type, and that this implies further properties of the
eigenvectors. Moreover, their results include consideration both of the case
of independent translates of f and of the case of dependent translates of
f . Assuming independence of translates, they showed that for each s there
exist r polynomials us

1, . . . , u
s
r of degree at most p− 1 such that the eigen-

vectors Ys satisfy us
i (k) = ysk,i. Comparing to the previous remarks, we

see then that accuracy p is essentially equivalent to the existence of left
2−s-eigenvectors Ys for s = 0, . . . , p − 1, each with a special polynomial
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structure. Surprisingly, it is shown in [JRZ97] that accuracy p is equiva-
lent to the existence of a left eigenvector Yp−1 with polynomial structure,
i.e., the existence of this structured eigenvector implies the existence of the
other structured eigenvectors. They also showed that the existence of the
eigenvalues 1, 2−1, . . . , 2−(p−1) alone is not sufficient to imply accuracy; the
corresponding left eigenvectors must have the required polynomial struc-
ture. Some other important results in [JRZ97] include the fact that the
nonzero left and right eigenvalues of L coincide and that there are only
finitely many nonzero eigenvalues of L, and extensions of some of the re-
sults above to the case where f has dependent translates.

There are considerable difficulties involved in attempting to move the
study of accuracy from one to higher dimensions. One purely technical
problem is the explosion of indices: the functions f1, . . . , fr are each func-
tions of the variable x = (x1, . . . , xd)

T ∈ R
d, translates of these func-

tions are indexed by lattice points k = (k1, . . . , kd)
T ∈ Γ , and monomials

xα = xα1

1 · · ·xαd

d are indexed by multi-indices α = (α1, . . . , αd). Aside from
this notational issue, there are more difficult theoretical obstacles, most
importantly that (Ax)α is not itself a monomial for all α except in the
special case that A = cId. Instead, the dilation of xα by A results in a new
polynomial that is still homogeneous but can contain terms xβ for all β of
degree |α|. This prevents any trivial generalization of the one-dimensional
results to higher dimensions.

One of the key insights of this paper, which overcomes this and other
problems, is to consider together the monomials xα of a given degree. Di-
lation and translation of the entire vector of polynomials

X[s](x) = [xα]|α|=s

leads to the relatively simple matrix equations

X[s](Ax) = A[s] X[s](x),

X[s](x− y) =
s

∑

t=0

Q[s,t](y)X[t](x),

for some appropriate matrices A[s] and Q[s,t](y). If we set ds =
(

s+d−1
d−1

)

,

the number of monomials xα of degree |α| = s, then A[s] is a ds×ds matrix
completely determined by A and s. The entries of the ds × dt matrix
Q[s,t](y) are either 0 or are monomials in y of degree s− t. The matrix A[s]

has a number of surprising properties. For example, if λ = (λ1, . . . , λd)
T is

the vector of eigenvalues of A, then the eigenvalues of A[s] are [λα]|α|=s.
With this insight, we can now see how the one-dimensional results on

accuracy presage the more complicated higher-dimensional results. Suppose
that f = (f1, . . . , fr)

T satisfies the general multidimensional refinement
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equation (1.1). If we use a generalized matrix notation, allowing the matrix
entries to be indexed by the lattice Γ , then the analogue of the matrix L for
the general case is L = [cAi−j ]i,j∈Γ . Defining the “infinite column vector”
F (x) = [f(x+ k)]k∈Γ and using the obvious matrix/vector multiplication,
we show that the refinement equation is equivalent to the equation F (x) =
LF (Ax).

If f has accuracy p, then each monomial xα of degree less than p can be
written xα =

∑

k∈Γ

∑r
i=1 yα,i(k) fi(x+k). Omitting the precise hypotheses

and details (which are given in the statements of the theorems in Section 3),
we prove in this paper that the coefficients yα,i(k) are evaluations at lattice
points of multivariate polynomials yα,i of degree |α|. Defining the matrix
of polynomials

y[s](x) =







yα1,1(x) · · · yα1,r(x)
...

. . .
...

yαds ,1
(x) · · · yαds ,r

(x)







and infinite row vectors Y[s] =
(

y[s](k)
)

k∈Γ
containing the evaluations of

these polynomials at lattice points, it follows that if f has accuracy p then

X[s](x) =
∑

k∈Γ

y[s](x) f(x+ k) = Y[s] F (x), 0 ≤ s < p.

We show that accuracy p holds if and only if

Y[s] L = A−1
[s] Y[s] (1.7)

for s = 0, . . . , p − 1 with each Y[s] having the specified polynomial form.
Moreover, we show that this occurs if and only if (1.7) is satisfied for s =
p−1 with Y[p−1] having the required polynomial structure. Further, we show
that this condition can be translated into a finite system of linear equations.
The existence of a solution to this system, which has a block triangular
structure, is equivalent to the accuracy of f . The solution of the system
leads explicitly to the coefficients yα,i(k) that are used to reproduce the
monomial xα from translates of f . For the case of a single refinable function
(r = 1), this test for accuracy simplifies dramatically, to the following form
similar to (1.3),

∑

k∈Γ

ck = m and
∑

k∈Γ1

kαck = · · · =
∑

k∈Γm

kαck for 0 ≤ |α| < p,

where the Γi are the cosets of the sublattice A(Γ ) in the quotient group
Γ/A(Γ ).

We see then that the eigenvalue/eigenvector condition of the one-dimen-
sional case is a consequence of the very special form of A[s] when d = 1,
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namely that A[s] = As with A a scalar. In the special case A = cId,
which plays a role in the construction of “separable” wavelets in higher
dimensions, we have A[s] = csIds

, and then (1.7) is again, as in the one-
dimensional case, an eigenvector equation. In the general case it is instead
a kind of “generalized eigenvector equation.”

In the course of our analysis we prove some results that apply to the shift-
invariant space generated by arbitrary functions f1, . . . , fr. We show that
even for arbitrary f = (f1, . . . , fr)

T with independent translates, accuracy
p implies that the coefficients yα,i(k) such that

xα =
∑

k∈Γ

r
∑

i=1

yα,i(k) fi(x+ k)

are evaluations of polynomials at lattice points. Hence for each polynomial
q ∈ S(f) with deg(q) < p, there exist polynomials uq,1, . . . , uq,r such that

q(x) =
r

∑

i=1

∑

k∈Γ

uq,i(k) fi(x+ k). (1.8)

This result can also be viewed as a restatement of the Strang–Fix conditions
for multiple functions in higher dimensions.

In addition, we prove the following related result, although we make no
actual use of it in this paper. We show that if any polynomial q lying in
S(f) can be written as in (1.8) with coefficients that are evaluations of
polynomials at lattice points, then

∂q

∂xj
(x) =

∑

k∈Γ

r
∑

i=1

∂uq,i

∂xj
(k) fi(x+ k), (1.9)

and hence any derivative of q also lies in S(f). This result can also be
obtained by using Appell polynomials [deB90].

The outline of our paper is as follows. Following the presentation of
our notation in Section 2, we give the precise statement of our results in
Section 3. The proofs of these results are given in Section 4. Section 5
contains some applications of these results to the specific case of the “quin-

cunx” or “twin dragon” dilation matrix A =
[

1 −1
1 1

]

. This matrix is one

of the most popular for the construction of nonseparable wavelet bases for
L2(R2). Finally, we provide in the Appendix a discussion of the conver-
gence of the infinite matrix product

∏∞
j=1 M(Bjω), where B = (A−1)T and

M(ω) = (1/m)
∑

k∈Λ ck e
−2πik·ω. This product arises when considering the

Fourier transform of the refinement equation, and plays a role in the proof
of Theorem 3.9.

Note added in proof. Following completion of this paper we became
aware of some related results obtained independently. In [Jia98], Jia con-
sidered the accuracy of a single function in higher-dimensions. In [Jng96],
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Jiang obtained some results on accuracy of multiple functions in higher
dimensions, but only for a restricted class of dilation matrices.

2. NOTATION

2.1. General Notation and Remarks

The space C
r = C

r×1 is the set of ordinary r × 1 column vectors with
complex entries, and C

1×r is the set of 1 × r row vectors with complex
entries. In particular, f(x) ∈ C

r is an r×1 column vector for each x ∈ R
d.

We use the standard multi-index notation xα = xα1

1 · · ·xαd

d , where x =

(x1, . . . , xd)
T ∈ R

d and α = (α1, . . . , αd) with each αi a nonnegative inte-
ger. The degree of α is |α| = α1 + · · ·+αd. The number of multi-indices α

of degree s is ds =
(

s+d−1
d−1

)

. We write β ≤ α if βi ≤ αi for i = 1, . . . , d.

Recall that m = | det(A)| is an integer. Therefore, the quotient group
Γ/A(Γ ) has order m. A full set of digits d1, . . . , dm ∈ Γ is a complete set
of representatives of Γ/A(Γ ). In this case, Γ is partitioned into the disjoint
cosets

Γi = A(Γ )− di = {Ak − di : k ∈ Γ}.

For example, if d = 1, Γ = Z, and A = m, then 0, . . . ,m− 1 is a full set of
digits.

Recall that the lattice Γ is the set of integer linear combinations of the
vectors u1, . . . , ud ∈ R

d. Therefore, the rectangular parallelepiped

P = {x1u1 + · · ·+ xdud : 0 ≤ xi < 1}

is a fundamental domain for the group R
d/Γ , i.e., it is a full set of rep-

resentatives of R
d/Γ . R

d is therefore partitioned into the disjoint sets
{P + k}k∈Γ . Note that R

d/Γ is isomorphic to the d-dimensional torus
R

d/Zd via a simple change of variables. In fact, {W−1x : x ∈ P} = [0, 1)d

if W is the matrix with u1, . . . , ud as columns.
Integrals of the vector-valued function f = (f1, . . . , fr)

T are computed
componentwise. If f is integrable then we define its Fourier transform by

f̂(ω) =

∫

Rd

f(x) e−2πix·ω dx

=

(
∫

Rd

f1(x) e
−2πix·ω dx, . . . ,

∫

Rd

fr(x) e
−2πix·ω dx

)T

.



14 CABRELLI, HEIL, AND MOLTER

In particular,

f̂(0) = (f̂1(0), . . . , f̂r(0))
T =

(
∫

Rd

f1(x) dx, . . . ,

∫

Rd

fr(x) dx

)T

.

Suppose that f :Rd → C
r is integrable and refinable. If we define B =

(A−1)T, then f̂ will satisfy the equation

f̂(ω) = M(Bω) f̂(Bω),

where M(ω) = (1/m)
∑

k∈Λ ck e
−2πik·ω is the matrix-valued symbol of the

refinement equation. In particular, if we set

∆ = M(0) =
1

m

∑

k∈Λ

ck,

then
f̂(0) = M(0) f̂(0) = ∆ f̂(0).

Therefore, f̂(0) is a right 1-eigenvector of ∆ if f̂(0) 6= 0.
In the one-dimensional case with d = 1, A = 2, Γ = Z, and Λ =

{0, . . . , N}, it is known that if f is an integrable solution of the refinement

equation and f̂(0) = 0, then there is a positive integer n such that the
refinement equation with coefficients 2−nc0, . . . , 2

−ncN has an integrable
solution g satisfying ĝ(0) 6= 0. Moreover, f is the nth distributional deriv-
ative of g in this case. The accuracy of f is clearly determined from the
accuracy of g. These facts were established for the PSI case in [DL91] and
for the FSI case in [HC96]. We believe that analogues of these facts should
hold in higher dimensions as well, although we are not aware of any papers
addressing this issue. As a consequence of these remarks, we concentrate in

this paper on those refinement equations whose solutions f satisfy f̂(0) 6= 0.

2.2. Generalized Matrix Notation

The notation of this paper is complicated by the multitude of indices
involved. These are of three basic types: one related to the dimension of
R

d, a second due to the multiplicity of functions f1, . . . , fr, and a third
related to elements of the lattice Γ . We therefore introduce the following
generalized matrix/vector notation, which greatly simplifies the abstract
formulation of our results.

Let J and K be finite or countable index sets. If mj,k ∈ C for j ∈ J and
k ∈ K, then we say that M = [mj,k]j∈J,k∈K ∈ C

J×K is a “J ×K matrix.”
We also allow block entries. For example, if each mj,k is an r × s matrix
with complex entries then we refer to M = [mj,k]j∈J,k∈K ∈ (Cr×s)J×K as a
J×K matrix with r×s block entries. We say that the blockmj,k lies in “row
j, column k.” Analogues of all the usual matrix definitions and operations
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apply. For example, the transpose of M is MT = [mT
j,k]k∈K,j∈J . The J ×J

identity matrix is I = [δi,j ]i,j∈J , where δi,j = 1 if i = j and 0 if i 6= j.
If M = [mj,k]j∈J,k∈K is a J×K matrix and N = [nk,ℓ]k∈K,ℓ∈L is a K×L

matrix such that the product of the block mj,k with the block nk,ℓ makes
sense, then we define the product of M with N to be the J × L matrix

MN =

[
∑

k∈K

mj,k nk,ℓ

]

j∈J,ℓ∈L

.

All summations encountered in this paper will contain only finitely many
nonzero terms, and therefore are always well-defined.

A column vector is a J × 1 matrix, with scalar or block entries. We
denote a column vector by v = [vj ]j∈J . A row vector is a 1×J matrix. We
use the notation u = (uj)j∈J to denote a row vector. A row vector is the
transpose of a column vector.

2.3. The Refinement Equation and the Operator L

Using our generalized matrix notation, we can recast the refinement
equation (1.1) as an infinite matrix-vector equation.

A fundamental operator associated with the refinement equation is the
Γ × Γ matrix L with r × r block entries cAi−j , i.e.,

L = [ cAi−j ]i,j∈Γ ,

where we assume that ck = 0 if k /∈ Λ. Note that only finitely many entries
of any given row or column of L are nonzero.

For each x ∈ R
d, let F (x) be the infinite column vector with r× 1 block

entries f(x+ k), i.e.,

F (x) = [ f(x+ k) ]k∈Γ .

Note that for a given x, only finitely many entries f(x + k) of F (x) are
nonzero since f has compact support.

If f satisfies the refinement equation (1.1), then

LF (Ax) = [ cAi−j ]i,j∈Γ [ f(Ax+ j) ]j∈Γ

=

[∑

j∈Γ

cAi−j f(Ax+ j)
]

i∈Γ

=

[
∑

k∈Γ

ck f(Ax+Ai− k)
]

i∈Γ

= [ f(x+ i) ]i∈Γ

= F (x).
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The converse is also true, so the refinement equation (1.1) can be rewritten
as

LF (Ax) = F (x).

We will say that translates of f along Γ are independent if for every
choice of row vectors bk ∈ C

1×r,
∑

k∈Γ

bk f(x+ k) = 0 ⇐⇒ bk = 0 for every k.

Equivalently, for every choice of infinite row vector b = (bk)k∈Γ with block
entries bk ∈ C

1×r,

b F (x) = 0 ⇐⇒ b = 0.

2.4. Translation and Dilation of Multidimensional Polynomials

Recall that the number of monomials xα of degree s is ds =
(

s+d−1
d−1

)

.

For each integer s ≥ 0 we define the vector-valued function X[s]:R
d → C

ds

by
X[s](x) = [xα ]|α|=s , x ∈ R

d.

In this section we shall define the matrix A[s] and matrix of polynomials
Q[s,t] which naturally arise when considering the dilation and translation
of the vector of monomials X[s]. We will see that these matrices satisfy the
fundamental equations

X[s](Ax) = A[s] X[s](x),

X[s](x− y) =
s

∑

t=0

Q[s,t](y)X[t](x).

Consider the behavior ofX[s](x) under translation by an element y ∈ R
d.

If xα has degree s, then (x − y)α as a polynomial in x has degree s and
can involve terms xβ for 0 ≤ |β| ≤ s. Let qα,β(y) be the coefficients of this
polynomial, i.e.,
∑

0≤|β|≤s

qα,β(y)x
β

= (x− y)α

= (x1 − y1)
α1 · · · (xd − yd)

αd

=
d
∏

i=1

αi
∑

βi=0

(

αi

βi

)

(−yi)
αi−βi xβi

i

=

α1
∑

β1=0

· · ·
αd
∑

βd=0

(

α1

β1

)

· · ·
(

αd

βd

)

(−y1)
α1−β1 · · · (−yd)

αd−βd xβ1

1 · · ·xβd

d .
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In particular, the nonzero terms of (x−y)α occur only when β ≤ α. There-
fore, if we set

(

α

β

)

=







(

α1

β1

)

· · ·
(

αd

βd

)

, if βi ≤ αi for every i,

0, if βi > αi for some i,

then qα,β(y) = (−1)|α|−|β|
(

α
β

)

yα−β . Thus, each qα,β is itself a polynomial,

which is either identically zero or is a monomial of degree |α| − |β|.
For each integer 0 ≤ t ≤ s, define the matrix of polynomials Q[s,t]:R

d →
C

ds×dt by

Q[s,t](y) = [ qα,β(y) ]|α|=s,|β|=t = (−1)s−t

[(

α

β

)

yα−β

]

|α|=s,|β|=t

. (2.1)

Note that each entry of Q[s,t] is either 0 or is a monomial of degree s − t.
By definition,

X[s](x− y) = [ (x− y)α ]|α|=s

=

[ s
∑

t=0

∑

|β|=t

(−1)s−t

(

α

β

)

yα−β xβ

]

|α|=s

=
s

∑

t=0

Q[s,t](y)X[t](x).

Consider next the behavior of X[s](x) under dilation by an arbitrary d×d
matrix A. Let ai,j denote the entries of A. If |α| = s, then (Ax)α is still
a homogeneous polynomial of degree s, but possibly involving all terms xβ

with |β| = s. Let asα,β be the coefficients of the polynomial (Ax)α, i.e.,

∑

|β|=s

asα,β x
β = (Ax)α = (Ax)α1

1 · · · (Ax)αd

d

=

d
∏

i=1

(ai,1x1 + · · ·+ ai,dxd)
αi .

Let A[s] be the ds × ds matrix

A[s] = [ asα,β ]|α|=s,|β|=s.

Then we have

X[s](Ax) = [ (Ax)α ]|α|=s = [ asα,β ]|α|=s,|β|=s [x
α ]|α|=s = A[s] X[s](x).
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We emphasize that the definition of A[s] is valid for any d × d matrix A,
although we shall apply it most often to the dilation matrix A appearing
in the refinement equation (1.1).

As an example, consider A[1]. There is a natural ordering of the degree-
1 polynomials, namely x1, . . . , xd. With this ordering, we have X[1](x) =

(x1, . . . , xd)
T = x. Therefore,

A[1] X[1](x) = X[1](Ax) =







(Ax)1
...

(Ax)d







=







a1,1x1 + · · ·+ a1,dxd

...
ad,1x1 + · · ·+ ad,dxd






= AX[1](x).

Thus A[1] = A with this ordering.

2.5. Some Special Matrices and Polynomial Functions

Given a collection

{vα = (vα,1, . . . , vα,r) ∈ C
1×r : 0 ≤ |α| < p}

of row vectors of length r, we shall associate a number of special matrices
and functions. These play an important role in our analysis of accuracy.
We use the notation of this section extensively throughout the paper.

We group the vα by degree to form ds× 1 column vectors v[s] with block
entries that are the 1× r row vectors vα. Specifically, we set

v[s] = [vα]|α|=s, 0 ≤ s < p.

Thus v[s] ∈ (C1×r)ds×1. Alternatively, we could view v[s] as a ds×r matrix

v[s] =







vα1,1 · · · vα1,r

...
. . .

...
vαds ,1

· · · vαds ,r






.

However, the block viewpoint for v[s], and for the other vectors defined
below, is especially convenient for our analysis. Note that v[0] = [v0] = v0,
since α = 0 is the only multi-index of degree 0.

We shall now define several vector-valued or matrix-valued functions,
each of whose entries is a polynomial. In general, if u = [uj,k]j∈J,k∈K :Rd →
C

J×K and each uj,k:R
d → C is a polynomial, then we will say that u is a

matrix of polynomials. The degree of u is the maximum degree of the uj,k,
i.e., deg(u) = max{deg(uj,k)}j∈J,k∈K .
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For each α, we define a row vector of polynomials yα:R
d → C

1×r by

yα(x) =
∑

0≤β≤α

(−1)|α|−|β|

(

α

β

)

vβ x
α−β

=
∑

0≤β≤α

(

(−1)|β|
(

α

α− β

)

vα−β

)

xβ . (2.2)

Note that if we write yα(x) = (yα,1(x), . . . , yα,r(x)), then the coefficients of
the polynomial yα,i are completely determined by the scalars vβ,i for those
β with 0 ≤ β ≤ α. Further, deg(yα) = max{deg(yα,1), . . . , deg(yα,r)} ≤ |α|,
and

deg(yα) = |α| ⇐⇒ v0 6= 0.

Note that yα(0) = vα, and that y0(x) = v0 for every x.
As with the vectors vα, we collect the vectors of polynomials yα by degree

and arrange them as block entries in a column vector to form the matrix
of polynomials y[s]:R

d → (C1×r)ds×1. Specifically,

y[s](x) = [ yα(x) ]|α|=s

=

[ s
∑

t=0

∑

|β|=t

(−1)s−t

(

α

β

)

xα−β vβ

]

|α|=s

=
s

∑

t=0

Q[s,t](x) v[t]. (2.3)

Thus, for a given x, y[s](x) is a ds×1 column vector with block entries that
are the 1× r row vectors yα(x). Note that the coefficients of the matrix of
polynomials y[s] are entirely determined by the matrices v[t] for 0 ≤ t ≤ s.
In addition, y[s](0) = v[s], and y[0](x) = y0(x) = v0 for every x. Moreover,
deg(y[s]) ≤ s, and deg(y[s]) = s if and only if v0 6= 0.

Finally, for each x we collect the blocks y[s](x + k) into an infinite row

vector to form a function Y[s]:R
d →

(

(C1×r)ds×1
)1×Γ

. Specifically,

Y[s](x) =
(

y[s](x+ k)
)

k∈Γ
. (2.4)

We adopt the convention that

Y[s] = Y[s](0) =
(

y[s](k)
)

k∈Γ
.

Thus Y[s] is the row vector of evaluations of the matrix of polynomials y[s]
at lattice points. Note that since y[0](x) = v0 for every x, Y[0](x) is the
“constant” vector Y[0](x) = (v0)k∈Γ .
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Example 2.1. Consider the above definitions in the one-dimensional case.
If d = 1 then ds = 1 for every s, since there is a single polynomial xs of
degree s. In this case,

vα = vs ∈ C
1×r,

v[s] = [vα]|α|=s = vs ∈ C
1×r,

ys(x) =

s
∑

t=0

(−1)s−t

(

s

t

)

xs−t vt maps R → C
1×r,

y[s](x) = [yα(x)]|α|=s = ys(x) maps R → C
1×r,

Y[s](x) =
(

ys(x+ k)
)

k∈Γ
maps R → (C1×r)1×Γ .

In particular, Y[s](x) is an infinite row vector whose entries are the 1 × r
row vectors ys(x+ k). Moreover, since Γ = bZ for some constant b, Y[s](x)
is simply an “ordinary” infinite row vector of the form

Y[s](x) = ( · · · , ys(x− b), ys(x), ys(x+ b), · · · ),

with blocks ys(x+ kb) that are ordinary 1× r row vectors. �

3. STATEMENT OF RESULTS

3.1. Results for Arbitrary Functions

Our initial result states that for arbitrary (not necessarily refinable) func-
tions f with independent translates, the coefficients that are used to recon-
struct the polynomials xα from translates of f are themselves polynomials
evaluated at lattice points. This result can also be viewed as a restatement
of the Strang–Fix conditions for multiple functions in higher dimensions.

Theorem 3.1. Assume that f :Rd → C
r is compactly supported, and that

translates of f along Γ are independent.

If f has accuracy p, then there exists a collection {vα ∈ C
1×r : 0 ≤ |α| <

p} of row vectors such that

(i) v0 6= 0, and
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(ii) X[s](x) =
∑

k∈Γ

y[s](k) f(x+ k) = Y[s] F (x) for 0 ≤ s < p,

where Y[s] =
(

y[s](k)
)

k∈Γ
is the row vector of evaluations at lattice points

of the matrix of polynomials y[s](x) =
∑s

t=0 Q[s,t](x) v[t] defined by (2.3).
In particular, if q is any polynomial with deg(q) < p, then there exists a

unique row vector of polynomials uq:R
d → C

1×r, with deg(uq) = deg(q),
such that

q(x) =
∑

k∈Γ

uq(k) f(x+ k).

Note that since translates of f are assumed to be independent, the co-
efficients y[s](k) in statement (ii) of Theorem 3.1 are unique.

Since X[s](x) = [xα]|α|=s and y[s] = [yα]|α|=s, it follows from statement
(ii) of Theorem 3.1 that the individual polynomials xα are obtained from
translates of f by the formula xα =

∑

k∈Γ yα(k) f(x + k), where yα(x) =
∑

0≤β≤α (−1)|α|−|β|
(

α
β

)

xα−β vβ is the row vector of polynomials defined in

(2.2). Since v0 6= 0, deg(yα) = |α| and deg(y[s]) = s.

Remark 3.2. Suppose that f :Rd → C
r is compactly supported with in-

dependent translates, and has accuracy p. Let Πp,r be the space of all
row vectors of polynomials u:Rd → C

1×r with deg(u) < p. Then Theo-
rem 3.1 states that the linear mapping T :Πp,1 → Πp,r defined by T (q) = uq

is injective and preserves degree. The dimensions of Πp,1 and Πp,r =
Πp,1 × · · · × Πp,1 are equal only when r = 1. Therefore T is surjective
if and only if r = 1. As a consequence, in the PSI case (r = 1), for each
polynomial u ∈ Πp,1 we have that the function q(x) =

∑

k∈Γ u(k) f(x+ k)
is itself a multivariate polynomial with deg(q) = deg(u).

However, T cannot be surjective when r > 1. As a consequence, there
must exist polynomials u ∈ Πp,r such that q(x) =

∑

k∈Γ u(k) f(x + k) is
not a polynomial. To construct a specific example, consider any constant
vector of polynomials u(x) ≡ u0 ∈ C

1×r. If q(x) =
∑

k∈Γ u(k) f(x +
k) is a polynomial, then we must have deg(q) = deg(u) = 0. Thus q is
constant. However, translates of f are independent, so this implies that u0

is a multiple of v0. Therefore, if u0 is not a multiple of v0 then q cannot be
a polynomial. �

The following result states that, regardless of whether f has accuracy
p or not, if any monomial xα can be reproduced from lattice translates
of f using coefficients that are themselves polynomials evaluated at lattice
points, then the monomial xβ can also be reproduced from translates of f
for each 0 ≤ β ≤ α. Moreover, the coefficients used to obtain xβ are the
evaluations at lattice points of a constant times the α− β derivative of the
coefficients used to obtain xα. This result can also be obtained by using
Appell polynomials. We make no use of this result in the sequel.
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Theorem 3.3. Assume that f :Rd → C
r is compactly supported, and let

α be any multi-index. If u:Rd → C
1×r is a row vector of polynomials such

that

xα =
∑

k∈Γ

u(k) f(x+ k),

then for each 0 ≤ β ≤ α,

xβ = Cβ

∑

k∈Γ

(Dα−βu)(k) f(x+ k),

where

Dγu =

(

∂|γ|

∂xγ
u1, . . . ,

∂|γ|

∂xγ
ur

)

and

Cγ = (−1)|α−γ| γ!

α!
= (−1)|α−γ| γ1!

α1!
· · · γd!

αd!
.

3.2 Results for Refinable Functions

The following result gives necessary and/or sufficient conditions for a
refinable function to have accuracy p.

Theorem 3.4. Assume that f :Rd → C
r satisfies the refinement equation

(1.1), and that f is integrable and compactly supported. Consider the

following statements.

(I) f has accuracy p.

(II) There exists a collection of row vectors {vα ∈ C
1×r : 0 ≤ |α| < p}

such that

(i) v0f̂(0) 6= 0, and

(ii) Y[s] = A[s] Y[s] L for 0 ≤ s < p,

where Y[s] =
(

y[s](k)
)

k∈Γ
is the row vector of evaluations at lat-

tice points of the matrix of polynomials y[s](x) =
∑s

t=0 Q[s,t](x) v[t]
defined by (2.3).

Then we have the following.

(a) If translates of f along Γ are independent, then statement (I) im-

plies statement (II).

(b) Statement (II) implies statement (I). In this case, if we scale all the

vectors vα by the factor C = (v0f̂(0))
−1 |P |, then

X[s](x) =
∑

k∈Γ

y[s](k) f(x+ k) = Y[s] F (x), 0 ≤ s < p. (3.1)
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Recall that Q[s,t] is a matrix of polynomials, and that deg(Q[s,t]) = s− t.
Hence deg(y[s]) = s if and only if v0 6= 0. In particular, the hypothesis

v0f̂(0) 6= 0 in statement (II) of Theorem 3.4 implies that v0 6= 0, and
therefore that y[s] has degree s.

Remark 3.5. Let us comment on the significance of hypothesis (i) in state-

ment (II) of Theorem 3.4, which states that v0f̂(0) 6= 0. In the proof
of Theorem 3.4(b), we will see that the s = 0 case of hypothesis (ii) in
statement (II) implies that G[0](x) =

∑

k∈Γ v0 f(x + k) = C, a constant.
Therefore f will have accuracy at least p = 1 if C 6= 0. By integrat-
ing G[0] over the fundamental domain P , we show that the value of C is

C = (v0f̂(0)) |P |−1. Hence the constant polynomial 1 is reproduced from

translates of f if v0f̂(0) 6= 0.

It is apparent then that we could replace the hypothesis v0f̂(0) 6= 0 by
the hypothesis that G[0](x) =

∑

k∈Γ v0 f(x+k) does not vanish everywhere.
This version of the hypothesis might be advantageous if f is known to be
continuous, for then it suffices to show that G[0](x) 6= 0 for a single x. On

the other hand, the vectors v0 and f̂(0) can be computed directly from

the matrices ck in many cases. As discussed in Section 2.1, f̂(0) is a right
1-eigenvector of the matrix ∆ = (1/m)

∑

k∈Λ ck. As a consequence of
Theorem 3.6 below, which gives some equivalent formulations of hypothesis
(ii) in statement (II), the vector v0 is a left 1-eigenvector of the same matrix
∆. If the eigenvalue 1 for ∆ is simple, which is the case in most practical

examples, then v0 and f̂(0) are uniquely determined up to scalar multiples.

Moreover, in this case we automatically have v0f̂(0) 6= 0 since the product of
the left and right 1-eigenvectors of a matrix is nonzero when the eigenvalue
1 is simple. These facts are made explicit in Theorem 3.9. �

The following result gives several equivalent formulations of requirement
(ii) in statement (II) of Theorem 3.4.

Theorem 3.6. Let m = | det(A)|, and let d1, . . . , dm ∈ Γ be a full set of

digits. Set Γi = A(Γ )− di.
Given a collection {vα ∈ C

1×r : 0 ≤ |α| < p} of row vectors, let y[s](x) =
∑s

t=0 Q[s,t](x) v[t] be the matrix of polynomials defined by (2.3) and let

Y[s] =
(

y[s](k)
)

k∈Γ
be the row vector of evaluations of this polynomial at

lattice points.

If v0 6= 0, then the following statements are equivalent.

(a) Y[p−1] = A[p−1] Y[p−1] L.

(b) Y[s] = A[s] Y[s] L for 0 ≤ s < p.

(c) v[s] =
∑

k∈Γi

s
∑

t=0

Q[s,t](k)A[t] v[t] ck for 0 ≤ s < p and i = 1, . . . ,m.
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Since only finitely many ck are nonzero, the summations in statement (c)
of Theorem 3.6 are all finite.

Note that if s = 0 then statement (c) in Theorem 3.6 reduces to the
requirement that v0 = v0

∑

k∈Γi
ck for i = 1, . . . ,m. Since Γ is the disjoint

union of the Γi, this implies that v0 = v0∆, where ∆ = (1/m)
∑

k∈Λ ck.
Hence v0 is a left 1-eigenvector of ∆.

An important implication of statement (c) in Theorem 3.6 is that the
vectors vα are determined directly by the matrices ck and can be computed
without explicit knowledge of f . These vectors determine the coefficients
y[s](k) needed to reproduce the vector of monomials X[s](x) from translates
of f . Hence these coefficients can be derived directly from the matrices ck.

Statement (c) of Theorem 3.6 is a finite system of linear equations, stated
in terms of the collections v[s] = [vα]|α|=s. If desired, it is possible to rewrite
this system in terms of the vα themselves, by simply writing out the entries
of both sides of the equations. If we do this, then we have the following
form of statement (c):

vα =
∑

k∈Γi

s
∑

t=0

∑

|β|=t

∑

|γ|=t

(−1)s−t

(

α

β

)

kα−β atβ,γ vγ ck,











0 ≤ s < p,

|α| = s,

i = 1, . . . ,m.

We shall refer to either form of this system of equations as the sum rules.

Note that in either form, this system has a block triangular structure
since the equation for v[s] involves only v[0], . . . , v[s]. Hence the system can
be checked recursively, i.e., v[s+1] is solved for after v[0], . . . , v[s] have been
found.

In the case of a single refinable function (r = 1), the coefficients ck in
the refinement equation are simply scalars. Hence, they commute with any
matrix or vector. This leads to the following dramatic simplification of the
sum rules.

Theorem 3.7. Assume that r = 1. Letm = | det(A)|, and let d1, . . . , dm ∈
Γ be a full set of digits. Set Γi = A(Γ )−di. Then the following statements

are equivalent.

(a) There exists a collection of scalars {vα ∈ C : 0 ≤ |α| < p} so that

v0 6= 0 and the equivalent statements (a)–(c) in Theorem 3.6 hold.

(b)
∑

k∈Γ

ck = m and
∑

k∈Γ1

kαck = · · · =
∑

k∈Γm

kαck for 0 ≤ |α| < p.

Note that statement (b) in Theorem 3.7 for the case d = 1, r = 1, A = 2,
Γ = Z, and Λ ⊂ {0, . . . , N} precisely yields the sum rules in (1.3).
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Example 3.8. The following example shows that the hypothesis r = 1 in
Theorem 3.7 is necessary. Set d = 1, r = 2, A = 2, Γ = Z, Λ = {0, 1, 2},
and

c0 =

[

1/2 3/4
−1/8 −1/8

]

, c1 =

[

1 0
0 1/2

]

, c2 =

[

1/2 −3/4
1/8 −1/8

]

.

The solution to this refinement equation is a cubic finite element pair with
accuracy p = 4 [HSS96]. We do have the s = 0 requirement c0 + c2 = c1,
but the s = 1 requirement fails since 0c0 + 2c2 6= 1c1. Thus statement (b)
in Theorem 3.7 is not valid for p = 2, hence is certainly not valid for p = 4.
However, the vectors v0 = (1, 0), v1 = (1, 1), v2 = (1, 2), v3 = (1, 3) satisfy
statement (c) in Theorem 3.6 with p = 4. �

Statement (II) in Theorem 3.4 includes the requirement that v0f̂(0) 6= 0.
The following theorem gives some sufficient conditions on f or directly on

the matrices ck so that v0 6= 0 implies v0f̂(0) 6= 0.

Theorem 3.9. Assume that f :Rd → C
r satisfies the refinement equation

(1.1), and that f is integrable and compactly supported. Let m = | det(A)|,
and let d1, . . . , dm ∈ Γ be a full set of digits. Assume that v0 ∈ C

1×r

satisfies statement (c) in Theorem 3.6 for the case s = 0, i.e.,

v0 = v0
∑

k∈Γi

ck, i = 1, . . . ,m. (3.2)

If v0 6= 0, then either of the following two conditions is sufficient to imply

that v0f̂(0) 6= 0, and therefore that f has accuracy at least p = 1:

(a) translates of f along Γ are independent, or

(b) the matrix ∆ = (1/m)
∑

k∈Λ ck has eigenvalues λ1 = 1 and

|λ2|, . . . , |λr| < 1.

Remark 3.10. Note that (3.2) states that v0 is a left 1-eigenvector for
each of the matrices ∆i =

∑

k∈Γi
ck. In the PSI case, v0 is a nonzero

scalar, so this requirement reduces to ∆i = 1 for i = 1, . . . ,m. Hence
∆ = (1/m)

∑

k∈Λ ck = (1/m)
∑m

i=1 ∆i = 1, so condition (b) in Theorem 3.9
is an immediate consequence of (3.2) when r = 1. �

By combining parts of Theorems 3.4, 3.6, and 3.9, we immediately con-
clude the following simple statement of necessary and sufficient conditions
for accuracy in the case where f has independent translates.

Theorem 3.11. Assume that f :Rd → C
r satisfies the refinement equation

(1.1), that f is integrable and compactly supported, and that translates of f
along Γ are independent. Then the following two statements are equivalent.
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(a) f has accuracy p.

(b) There exists a collection of row vectors {vα ∈ C
1×r : 0 ≤ |α| < p}

so that v0 6= 0 and the equivalent statements (a)–(c) in Theorem 3.6

hold.

If r = 1 and d1, . . . , dm ∈ Γ is a full set of digits, then these two statements

are further equivalent to the following statement.

(c)
∑

k∈Γ

ck = m and
∑

k∈Γ1

kαck = · · · =
∑

k∈Γm

kαck for 0 ≤ |α| < p.

Remark 3.12. Refinable functions whose translates along Γ are orthonormal
play a key role in the construction of orthonormal wavelet bases for L2(Rd).
In this case there is an interesting relationship between the vectors vα and
the moments mα,i =

∫

xα fi(x) dx. In particular, if f has accuracy p and
orthonormal translates, then for each |α| < p we have from Theorem 3.11
that xα =

∑

k∈Γ yα(k) f(x + k), where yα = (yα,1, . . . , yα,d) is the row
vector of polynomials defined in (2.2). Since xα is real-valued, we therefore
have

mα,i =

∫

Rd

xα fi(x) dx

=

∫

Rd

∑

k∈Γ

yα(k) f(x+ k) fi(x) dx

=
∑

k∈Γ

r
∑

j=1

yα,j(k)

∫

Rd

fj(x+ k) fi(x) dx

= yα,i(0) = vα,i.

Thus, if mα = (mα,1, . . . ,mα,d) is the row vector of the αth moments of
f1, . . . , fr, then vα = mα. �

4. PROOFS

4.1. Preliminary Lemmas

We will prove a number of useful lemmas in this section.
First, we derive some properties of the matrix of polynomials Q[s,t].

Lemma 4.1. (a) Q[s,s](y) = I.

(b) Q[s,0](y) = (−1)s X[s](y) = (−1)s [yα]|α|=s.

(c) If 0 ≤ t ≤ s, then

Q[s,t](x+ y) =
s

∑

u=t

Q[s,u](y)Q[u,t](x). (4.1)
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Proof. Parts (a) and (b) follow from definition of Q[s,t](y) in (2.1).

(c) For each x, y, z ∈ R
d we have

s
∑

t=0

Q[s,t](x+ y)X[t](z) = X[s](z − (x+ y))

=

s
∑

t=0

Q[s,t](y)X[t](z − x)

=

s
∑

t=0

Q[s,t](y)

t
∑

u=0

Q[t,u](x)X[u](z)

=
s

∑

u=0

s
∑

t=u

Q[s,t](y)Q[t,u](x)X[u](z)

=
s

∑

t=0

s
∑

u=t

Q[s,u](y)Q[u,t](x)X[t](z),
(4.2)

where we have interchanged the order of summation and then relabeled the
summation indices. For each fixed x and y, the only way that the first
vector of polynomials in z in (4.2) can equal the last vector of polynomials
in (4.2) is for the coefficients of these polynomials to be identical, which
happens if (4.1) holds. �

Next, we derive some properties of the matrices A[s].

Lemma 4.2. Let A, B be arbitrary d × d matrices. Then the following

statements hold.

(a) If d = 1 (so A is scalar), then A[s] = As.

(b) A[0] = 1 (scalar), and A[1] = A.

(c) (AB)[s] = A[s] B[s]. Hence, if A is invertible then so is A[s], and

(A[s])
−1 = (A−1)[s].

(d) Let λ = (λ1, . . . , λd)
T be the vector of eigenvalues of A. Then the

eigenvalues of A[s] are [λα]|α|=s.

(e) If A is expansive and s > 0, then A[s] is expansive.

Proof. (a), (b) Trivial.

(c) This ollows from

(AB)[s] X[s](x) = X[s](ABx) = A[s] X[s](Bx) = A[s] B[s] X[s](x).

(d) Although we usually regard the real matrix A as operating on real
Euclidean space R

d in this paper, to compute its eigenvalues we regard it
as operating on complex Euclidean space C

d.
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Recall that the number of multi-indices of degree s is ds =
(

s+d−1
d−1

)

.
Thus A[s] is a ds × ds matrix. Since any given ordering of the multi-

indices of degree s corresponds to a particular choice of basis for Cds , it is
clear that the eigenvalues of A[s] do not depend on the choice of ordering
used. In addition, the eigenvalues of A[s] are independent of the basis

for C
d in which the matrix A is expressed, for if B is invertible, then

(BAB−1)[s] = B[s] A[s] B
−1
[s] .

Therefore, choose a basis for Cd in which A is lower-triangular. We will
show that A[s] is also lower-triangular when we impose the following linear
ordering of the multi-indices of degree s:

α � β ⇐⇒
{

α = β or

∃ k such that α1 = β1, . . . , αk = βk, αk+1 > βk+1.
(4.3)

Denote the entries of A by ai,j . Since A is lower-triangular, the entries
asα,β of A[s] satisfy

∑

|β|=s

asα,β x
β = (Ax)α = (a1,1x1)

α1(a2,1x1 + a2,2x2)
α2 · · ·

× (ad,1x1 + · · ·+ ad,dxd)
αd . (4.4)

Let |β| = s. If β = α then we must have

asα,α xα = (a1,1x1)
α1 · · · (ad,dxd)

αd = λαxα,

where λ = (λ1, . . . , λd)
T = (a1,1, . . . , ad,d)

T is the vector of diagonal entries
of A. In particular, the diagonal entries of A[s] are λα for |α| = s. On the
other hand, if β 6= α, then k = max {i : αi = βi} < d − 1. To obtain the
term asα,β x

β in the left-hand side of (4.4), we are forced to choose in the

right-hand side of (4.4) the terms (a1,1x1)
α1 , . . . , (ak,kxk)

αk out of the first
k factors, and to choose no terms involving x1, . . . , xk out of the remaining
d−k factors. Hence, if asα,β x

β is nonzero, then it must be one term resulting
from the expansion of the product

(a1,1x1)
α1 · · · (ak,kxk)

αk(ak+1,k+1xk+1)
αk+1 · · ·

× (ad,k+1xk+1 + · · ·+ ad,dxd)
αd .

As a consequence, βk+1 ≥ αk+1, and therefore, by definition of k, βk+1 >
αk+1.

Thus, asα,β can only be nonzero when β � α. Therefore A[s] is lower-
triangular in this ordering, and the values λα appear on the diagonal.

(e) This follows immediately from (d). �
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If B is an invertible matrix then we have the following connection be-
tween B[s] and Q[s,t].

Lemma 4.3. Let B be an invertible matrix. If 0 ≤ t ≤ s and y ∈ R
d, then

Q[s,t](By) = B[s] Q[s,t](y)B
−1
[t] .

Proof. For each x, y ∈ R
d we have

s
∑

t=0

Q[s,t](By)X[t](x) = X[s](x−By)

= B[s] X[s](B
−1x− y)

= B[s]

s
∑

t=0

Q[s,t](y)X[t](B
−1x)

=
s

∑

t=0

B[s] Q[s,t](y)B
−1
[t] X[t](x). �

Next, we consider the behavior under translation of the matrix of poly-
nomials y[s].

Lemma 4.4. Given a collection {vα ∈ C
1×r : 0 ≤ |α| < p} of row vectors,

let y[s](x) =
∑s

t=0 Q[s,t](x) v[t] be the matrix of polynomials defined by

(2.3). Then

y[s](x+ y) =
s

∑

t=0

Q[s,t](y) y[t](x).

As a consequence, if Y[s](x) =
(

y[s](x+ k)
)

k∈Γ
, then

Y[s](x+ y) =
s

∑

t=0

Q[s,t](y)Y[t](x).

Proof. We compute

y[s](x+ y) =
s

∑

t=0

Q[s,t](x+ y) v[t] by (2.3)

=
s

∑

t=0

s
∑

u=t

Q[s,u](y)Q[u,t](x) v[t] by Lemma 4.1(c)

=

s
∑

u=0

u
∑

t=0

Q[s,u](y)Q[u,t](x) v[t] interchanging summations

=
s

∑

u=0

Q[s,u](y) y[u](x) by (2.3). �
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4.2. Proof of Theorem 3.1

Proof of Theorem 3.1. Since f has accuracy p, there exist row vectors
wα,k ∈ C1×r so that each polynomial xα with degree 0 ≤ |α| < p can
be written

xα =
∑

k∈Γ

wα,k f(x+ k) a.e.

For each k ∈ Γ , group the vectors wα,k by degree to form the column
vectors

w[s](k) = [wα,k]|α|=s.

Then, for each ℓ ∈ Γ define the infinite row vector

W[s](ℓ) =
(

w[s](k + ℓ)
)

k∈Γ
.

Next, set vα = wα,0, and, following the notation of Section 2.5, define the
vectors v[s] and matrix of polynomials y[s] by

v[s] = [vα]|α|=s and y[s](x) =

s
∑

t=0

Q[s,t](x) v[t].

Then, considering the polynomials xα by degree, we have for 0 ≤ s < p
that

X[s](x) = [xα ]|α|=s

=

[
∑

k∈Γ

wα,k f(x+ k)
]

|α|=s

=
∑

k∈Γ

w[s](k) f(x+ k)

= W[s](0)F (x).

Therefore, for each ℓ ∈ Γ ,

W[s](ℓ)F (x) = W[s](0)F (x− ℓ)

= X[s](x− ℓ)

=
s

∑

t=0

Q[s,t](ℓ)X[t](x)

=

( s
∑

t=0

Q[s,t](ℓ)W[t](0)

)

F (x).
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Considering our assumption that translates of f are independent, this im-
plies that

(

w[s](k + ℓ)
)

k∈Γ
= W[s](ℓ)

=

s
∑

t=0

Q[s,t](ℓ)W[t](0)

=

( s
∑

t=0

Q[s,t](ℓ)w[t](k)

)

k∈Γ

.

In particular, taking k = 0 we obtain

w[s](ℓ) =

s
∑

t=0

Q[s,t](ℓ)w[t](0) =

s
∑

t=0

Q[s,t](ℓ) v[t] = y[s](ℓ).

Consider now the case s = 0. Since y[0](k) = v0 for every k, we have

1 = x0 = X[0](x) =
∑

k∈Γ

y[0](k) f(x+ k) = v0
∑

k∈Γ

f(x+ k).

Therefore we must have v0 6= 0.
Finally, suppose that q(x) =

∑

0≤|α|≤s tα xα is any polynomial with

deg(q) = s < p. Since y[s] = [yα]|α|=s, we have that x
α =

∑

k∈Γ yα(k) f(x+
k). Therefore,

q(x) =
∑

k∈Γ

(

∑

0≤|α|≤s

tα yα(k)

)

f(x+ k) =
∑

k∈Γ

uq(k) f(x+ k). (4.5)

Since translates of f are independent, the coefficients uq(k) in (4.5) are
unique. However, uq(k) is the evaluation at lattice points of the row vector
of polynomials uq(x) =

∑

0≤|α|≤s tα yα(x). Since such evaluations uniquely

determine a polynomial, we conclude that uq is unique.
It therefore remains only to show that deg(uq) = s. For this, recall

that yα(x) =
∑

0≤β≤a (−1)|α|−|β|
(

α
β

)

xα−β vβ . Since v0 6= 0, we have

deg(yα) = |α|. Moreover, yα contains only a single term of degree |α|,
namely, (−1)|α| xα v0. Therefore, deg(uq) = max {|α| : tα 6= 0} = s. �

4.3. Proof of Theorem 3.3

Proof of Theorem 3.3. By hypothesis, there is a row vector of polynomials
u:Rd → C

r such that

xα =
∑

k∈Γ

u(k) f(x+ k). (4.6)
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Note that (x + ℓ)α =
∑

k∈Γ u(k − ℓ) f(x + k) for ℓ ∈ Γ . For each fixed x,
define

gx(y) = (x+ y)α and hx(y) =
∑

k∈Γ

u(k − y) f(x+ k).

Then gx and hx are both polynomials in the variable y ∈ R
d. Moreover,

gx(ℓ) = hx(ℓ) for every lattice point ℓ ∈ Γ . Therefore gx(y) = hx(y) for
every y ∈ R

d, i.e.,

(x+ y)α =
∑

k∈Γ

u(k − y) f(x+ k). (4.7)

Let ej be the multi-index of degree 1 with a 1 in the jth coordinate and 0’s
elsewhere. Then, by taking the derivative ∂/∂yj of both sides of (4.7) and
setting y = 0, we find that

αj x
α−ej = (−1)

∑

k∈Γ

(Deju)(k) f(x+ k). (4.8)

Since (4.6) holds for almost every x, (4.8) holds a.e. as well. The proof then
follows by repetition of this argument. �

4.4. Proof of Theorem 3.4(a)

In this section we will prove part (a) of Theorem 3.4, which we restate
in the following form.

Theorem 4.5. Assume that f :Rd → C
r satisfies the refinement equation

(1.1) and is compactly supported. Assume also that translates of f along

Γ are independent.

If f has accuracy p then there exists a collection of row vectors {vα ∈
C

1×r : 0 ≤ |α| < p} so that if y[s](x) =
∑s

t=0 Q[s,t](x) v[t] is the matrix of

polynomials defined by (2.3) and Y[s] =
(

y[s](k)
)

k∈Γ
is the row vector of

evaluations of this polynomial at lattice points, then

(i) v0f̂(0) 6= 0, and

(ii) Y[s] = A[s] Y[s] L for 0 ≤ s < p.

Proof. Since f has accuracy p and translates of f along Γ are independent,
Theorem 3.1 implies that there exist row vectors {vα ∈ C

1×r : 0 ≤ |α| < p}
such that v0 6= 0 and

X[s](x) =
∑

k∈Γ

y[s](k) f(x+ k) = Y[s] F (x), 0 ≤ s < p.
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If We combine this with the refinement equation F (x) = LF (Ax) and with
the definition of A[s], then we see that

Y[s] F (Ax) = X[s](Ax)

= A[s] X[s](x)

= A[s] Y[s] F (x)

= A[s] Y[s] LF (Ax).

Considering our assumption that translates of f are independent, this im-
plies that Y T

[s] = A[s] Y
T
[s] L for 0 ≤ s < p.

Consider now the case s = 0. Since y[0](k) = v0 for all k, we have

1 = x0 = X[0](x) =
∑

k∈Γ

v0 f(x+ k) a.e.

Recall that the rectangular parallelepiped P = {x1u1 + · · · + xdud : 0 ≤
xi < 1} is a fundamental domain for Γ . Therefore, computing integrals on
f componentwise,

v0f̂(0) = v0

∫

Rd

f(x) dx = v0
∑

k∈Γ

∫

P

f(x+k) dx =

∫

P

1 dx = |P | 6= 0,

which completes the proof. �

4.5. Proof of Theorem 3.4(b)

In this section we will prove part (b) of Theorem 3.4, which we restate
in the following form.

Theorem 4.6. Assume that f :Rd → C
r satisfies the refinement equation

(1.1), and that f is integrable and compactly supported.

Assume that there exists a collection of row vectors {vα ∈ C
1×r : 0 ≤

|α| < p} such that

(i) v0f̂(0) 6= 0, and

(ii) Y[s] = A[s] Y[s] L for 0 ≤ s < p,

where Y[s] =
(

y[s](k)
)

k∈Γ
is the row vector of evaluations at lattice points

of the matrix of polynomials y[s](x) =
∑s

t=0 Q[s,t](x) v[t] defined by (2.3).
Then f has accuracy p, and

Y[s] F (x) =
∑

k∈Γ

y[s](k) f(x+ k) = C X[s](x), 0 ≤ s < p,

where C = (v0f̂(0)) |P |−1.
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Proof. For each 0 ≤ s < p, define the vector-valued function G[s]:R
d →

C
ds by

G[s](x) =
∑

k∈Γ

y[s](k) f(x+ k) = Y[s] F (x). (4.9)

Note that for each fixed x, only finitely many terms in the summation
defining G[s](x) are nonzero.

Using the equation Y[s] = A[s] Y[s] L and the refinement equation
LF (Ax) = F (x), we have

G[s](Ax) = Y[s] F (Ax)

= A[s] Y[s] LF (Ax)

= A[s] Y[s] F (x)

= A[s] G[s](x). (4.10)

Since X[s](Ax) = A[s] X[s](x), we see that G[s](x) and X[s](x) behave iden-
tically under dilation by A. We will show that there is a constant C inde-
pendent of s so that G[s](x) = C X[s](x) for 0 ≤ s < p, and we will show

that the explicit value of C is C = (v0f̂(0)) |P |−1.
First, we need some basic facts concerning the mapping x 7→ Ax. Let

W be the matrix with the lattice generators u1, . . . , ud as columns. Then
W−1AW maps Z

d into itself, hence induces a homomorphism σ of the d-
dimensional torusRd/Zd into itself, defined by σ(x+Z

d) = W−1AWx+Z
d.

Since W−1AW is expansive, it follows from [Wal82, Corollary 1.10.1] that σ
is ergodic. Since x+Z

d 7→ W−1x+Γ is a topological group isomorphism of
R

d/Zd onto R
d/Γ , the mapping τ(x+Γ ) = Ax+Γ is therefore an ergodic

mapping of Rd/Γ onto itself. Recall that the rectangular parallelepiped
P = {x1u1 + · · · + xdud : 0 ≤ xi < 1} is a fundamental domain for Rd/Γ .
Therefore we can view τ as a mapping of P onto itself, defined by τ(x) =
Ax+j where j is the unique element of Γ such that Ax+j ∈ P . Since Haar
measure on R

d/Γ corresponds to Lebesgue measure on P , τ is an ergodic
mapping of P onto itself.

We now proceed by induction to show that G[s](x) = C X[s](x) for 0 ≤
s < p with C independent of s.

Consider the case s = 0. Here G[0](x) is scalar-valued. Since A[0] is the
constant 1, Eq. (4.10) states that G[0](Ax) = G[0](x). Further, y[0](k) = v0
for every k, so G[0](x) =

∑

k∈Γ v0 f(x + k). Therefore, for each ℓ ∈ Γ we
have

G[0](x− ℓ) =
∑

k∈Γ

v0 f(x− ℓ+ k) =
∑

k∈Γ

v0 f(x+ k) = G[0](x).

Thus G[0](x) satisfies

G[0](Ax) = G[0](x) and G[0](x− ℓ) = G[0](x), ℓ ∈ Γ.
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Hence G[0](τ(x)) = G[0](x) for each x ∈ P . Since τ is ergodic, it follows
that G[0] is constant a.e. on P [Wal82, Theorem 1.6]. By periodicity, we

therefore have G[0](x) = C a.e. on R
d. We can evaluate this constant

explicitly, since

C |P | =

∫

P

G[0](x) dx

= v0
∑

k∈Γ

∫

P

f(x+ k) dx

= v0

∫

Rd

f(x) dx

= v0f̂(0) 6= 0.

In particular, C = (v0f̂(0)) |P |−1 6= 0.
Suppose now, inductively, that G[t](x) = C X[t](x) a.e. for 0 ≤ t < s.

Using the notation Y[s](x) =
(

y[s](x+ k)
)

k∈Γ
as in (2.4), we then have

G[s](x− ℓ) = Y[s] F (x− ℓ)

= Y[s](ℓ)F (x)

=

s
∑

t=0

Q[s,t](ℓ)Y[t] F (x) by Lemma 4.4

=
s

∑

t=0

Q[s,t](ℓ)G[t](x)

= Q[s,s](ℓ)G[s](x) +

s−1
∑

t=0

Q[s,t](ℓ)G[t](x)

= Q[s,s](ℓ)G[s](x) + C
s−1
∑

t=0

Q[s,t](ℓ)X[t](x) by induction

= Q[s,s](ℓ)G[s](x) + C
s

∑

t=0

Q[s,t](ℓ)X[t](x) − C Q[s,s](ℓ)X[s](x)

= G[s](x) + C X[s](x− ℓ) − C X[s](x) by definition of Q[s,t].

Therefore, if we define H[s](x) = G[s](x)− C X[s](x), then

H[s](Ax) = A[s] H[s](x) and H[s](x− ℓ) = H[s](x), ℓ ∈ Γ.

This implies that
H[s](τ(x)) = A[s] H[s](x).

Let E ⊂ P be a set of positive measure on which H[s] is bounded, say

‖H[s](x)‖ ≤ M for x ∈ E, where ‖ · ‖ is any fixed norm on C
ds . Since τ is
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ergodic, we know from the Ergodic Theorem [Wal82, p. 35] that for almost
every x ∈ P ,

lim
n→∞

#{0 < k ≤ n : τk(x) ∈ E}
n

= |E| > 0. (4.11)

Fix any x ∈ P such that (4.11) holds. Then there exists an increasing
sequence {nj}∞j=1 of positive integers such that τnj (x) ∈ E for each j.
Hence

M ≥ ‖H[s](τ
nj (x))‖ = ‖(A[s])

nj H[s](x)‖.

However, Lemma 4.2(e) implies that A[s] is expansive since A is expansive
and s > 0. Therefore ‖(A[s])

nj H[s](x)‖ diverges to infinity if H[s](x) 6= 0.
Therefore we must have H[s](x) = 0 a.e. on P . Since H[s] is Γ -periodic,

it must therefore vanish a.e. on R
d. Hence G[s](x) = C X[s](x) a.e., which

completes the proof. �

4.6. Proof of Theorem 3.6

We will prove Theorem 3.6 in this section. First we require the following
lemma.

Lemma 4.7. Let matrices Bt ∈ C
dt×r be given for 0 ≤ t ≤ s. If

∑s
t=0 Q[s,t](Aℓ)Bt = 0 for each ℓ ∈ Γ , then Bt = 0 for 0 ≤ t ≤ s.

Proof. Denote the elements of Bt by Bt = [btβ,i]|β|=t,i=1,...,r. Consider a

single element btβ0,i0
of Bt. Since |β0| = t, we can find a multi-index α0 ≥ β0

with |α0| = s. Consider the polynomial

u(x) =
∑

|β|=t

(−1)s−t

(

α0

β

)

xα0−β btβ,i0 .

Then u(x) is element (α0, i0) of the matrix
∑s

t=0 Q[s,t](x)Bt. Hence
u(Aℓ) = 0 for every ℓ ∈ Γ , or, equivalently, u(ℓ) = 0 for every ℓ ∈ A(Γ ).
Since A(Γ ) is itself a full-rank lattice in R

d, this implies that u is the zero
polynomial, and therefore we must have

(

α0

β

)

btβ,i0 = 0 for every β of degree

t. In particular,
(

α0

β0

)

btβ0,i0
= 0. Since β0 ≤ α0 we know that

(

α0

β0

)

6= 0, so

we must have btβ0,i0
= 0. Thus every entry of Bt is zero. �

The following result is an expanded version of Theorem 3.6. It is helpful
to observe that the row vector A[s] Y[s] L can be written

A[s] Y[s] L = A[s]

(

y[s](k)
)

k∈Γ
[ cAk−ℓ ]k,ℓ∈Γ =

(

A[s]

∑

k∈Γ

y[s](k) cAk−ℓ

)

ℓ∈Γ

.
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Theorem 4.8. Let m = | det(A)|, and let d1, . . . , dm ∈ Γ be a full set of

digits. Set Γi = A(Γ )− di.
Given a collection {vα ∈ C

1×r : 0 ≤ |α| < p} of row vectors, let y[s](x) =
∑s

t=0 Q[s,t](x) v[t] be the matrix of polynomials defined by (2.3) and let

Y[s] =
(

y[s](k)
)

k∈Γ
be the row vector of evaluations of this polynomial at

lattice points.

If v0 6= 0, then the following statements are equivalent.

(a) Y[p−1] = A[p−1] Y[p−1] L. Equivalently,

y[p−1](ℓ) = A[p−1]

∑

k∈Γ

y[p−1](k) cAk−ℓ for ℓ ∈ Γ.

(b) Y[s] = A[s] Y[s] L for 0 ≤ s < p. Equivalently,

y[s](ℓ) = A[s]

∑

k∈Γ

y[s](k) cAk−ℓ for 0 ≤ s < p and ℓ ∈ Γ.

(c) y[s](di) = A[s]

∑

k∈Γ

y[s](k) cAk−di
for 0 ≤ s < p and i = 1, . . . ,m.

(d) v[s] =
∑

k∈Γi

s
∑

t=0

Q[s,t](k)A[t] v[t] ck for 0 ≤ s < p and i = 1, . . . ,m.

Proof. (a) ⇒ (b). Assume that (a) holds. Then

p−1
∑

s=0

Q[p−1,s](Aj)

(

A[s]

∑

k∈Γ

y[s](k) cAk−ℓ

)

=

p−1
∑

s=0

A[p−1] Q[p−1,s](j)
∑

k∈Γ

y[s](k) cAk−ℓ by Lemma 4.3

= A[p−1]

∑

k∈Γ

(p−1
∑

s=0

Q[p−1,s](j) y[s](k)

)

cAk−ℓ

= A[p−1]

∑

k∈Γ

y[p−1](j + k) cAk−ℓ by Lemma 4.4

= A[p−1]

∑

k∈Γ

y[p−1](k) cAk−(Aj+ℓ)

= y[p−1](Aj + ℓ) by hypothesis (a)

=

p−1
∑

s=0

Q[p−1,s](Aj) y[s](ℓ) by Lemma 4.4.

Lemma 4.7 therefore implies that A[s]

∑

k∈Γ y[s](k) cAk−ℓ = y[s](ℓ) for 0 ≤
s < p and ℓ ∈ Γ , so statement (b) holds.
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(b) ⇒ (a), (c). Trivial.

(c) ⇒ (b). Assume that (c) holds, and fix any ℓ ∈ Γ . Then ℓ = Aj + di
for a unique choice of j ∈ Γ and i = 1, . . . ,m. Therefore,

y[s](ℓ) = y[s](Aj + di)

=

s
∑

t=0

Q[s,t](Aj) y[t](di) by Lemma 4.4

=
s

∑

t=0

∑

k∈Γ

Q[s,t](Aj)A[t] y[t](k) cAk−di
by hypothesis (c)

=
∑

k∈Γ

s
∑

t=0

A[s] Q[s,t](j) y[t](k) cAk−di
by Lemma 4.3

= A[s]

∑

k∈Γ

y[s](k + j) cAk−di
by Lemma 4.4

= A[s]

∑

k∈Γ

y[s](k) cAk−(Aj+di)

= A[s]

∑

k∈Γ

y[s](k) cAk−ℓ.

(c) ⇒ (d). Assume that (c) holds. Then

v[s] = y[s](−di + di)

=
s

∑

t=0

Q[s,t](−di) y[t](di) by Lemma 4.4

=
s

∑

t=0

∑

k∈Γ

Q[s,t](−di)A[t] y[t](k) cAk−di
by hypothesis (c)

=
∑

k∈Γ

s
∑

t=0

t
∑

u=0

Q[s,t](−di)A[t] Q[t,u](k) v[u] cAk−di
by (2.3)

=
∑

k∈Γ

s
∑

t=0

t
∑

u=0

Q[s,t](−di)Q[t,u](Ak)A[u] v[u] cAk−di
by Lemma 4.3

=
∑

k∈Γ

s
∑

u=0

s
∑

t=u

Q[s,t](−di)Q[t,u](Ak)A[u] v[u] cAk−di
interchanging

summations

=
∑

k∈Γ

s
∑

u=0

Q[s,u](Ak − di)A[u] v[u] cAk−di
by Lemma 4.1(c)

=
∑

k∈Γi

s
∑

u=0

Q[s,u](k)A[u] v[u] ck by definition of Γi.
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(d) ⇒ (c). Assume that (d) holds. Then

A[s]

∑

k∈Γ

y[t](k) cAk−di

=
∑

k∈Γ

s
∑

t=0

A[s] Q[s,t](k) v[t] cAk−di
by (2.3)

=
∑

k∈Γ

s
∑

t=0

Q[s,t](Ak)A[t] v[t] cAk−di
by Lemma 4.3

=
∑

k∈Γ

s
∑

t=0

Q[s,t](di +Ak − di)A[t] v[t] cAk−di

=
∑

k∈Γ

s
∑

t=0

s
∑

u=t

Q[s,u](di)Q[u,t](Ak − di)A[t] v[t] cAk−di
by Lemma 4.1(c)

=
∑

k∈Γ

s
∑

u=0

u
∑

t=0

Q[s,u](di)Q[u,t](Ak − di)A[t] v[t] cAk−di
interchanging

summations

=

s
∑

u=0

Q[s,u](di) v[u] by hypothesis (d)

= y[s](di) by (2.3). �

4.7. Proof of Theorem 3.7

Proof of Theorem 3.7. Note first that since r = 1, the coefficients ck are
scalars, hence commute with any matrix or vector.

(a) ⇒ (b). Assume that there exist scalars {vα ∈ C : 0 ≤ |α| < p} so
that v0 6= 0 and statement (c) of Theorem 3.6 holds, i.e., for each 0 ≤ s < p
we have

v[s] =
∑

k∈Γi

s
∑

t=0

Q[s,t](k)A[t] v[t] ck, i = 1, . . . ,m. (4.12)

We proceed by induction on the degree of α to show that
∑

k∈Γi
kαck is

independent of i.
For s = 0, we have by (4.12) that

v0 = v[0] =
∑

k∈Γi

Q[0,0](k)A[0] v[0] ck = v0
∑

k∈Γi

ck.

Since v0 is a nonzero scalar, this implies that
∑

k∈Γi
ck = 1 is independent

of i, and that
∑

k∈Γ ck = m.
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Assume now, inductively, that
∑

k∈Γi
kαck is independent of i for all

multi-indices α with degrees 0 ≤ |α| < s. Recall the definition Q[s,t](k) =

(−1)s−t[
(

α
β

)

kα−β ]|α|=s,|β|=t. If 0 < t ≤ s then 0 ≤ s− t < s, so for these t

the matrix

M[s,t] =
∑

k∈Γi

Q[s,t](k) ck = (−1)s−t

[

(

α

β

)

∑

k∈Γi

kα−β ck

]

|α|=s,|β|=t

(4.13)
is independent of i. Since Q[s,0](k) = (−1)s X[s](k) and A[0] = 1, we there-
fore have by (4.12) that

v[s] =
∑

k∈Γi

s
∑

t=0

Q[s,t](k)A[t] v[t] ck

=

(

∑

k∈Γi

Q[s,0](k) ck

)

A[0] v[0] +

s
∑

t=1

(

∑

k∈Γi

Q[s,t](k) ck

)

A[t] v[t]

= (−1)s
(

∑

k∈Γi

X[s](k) ck

)

v0 +

s
∑

t=1

M[s,t] A[t] v[t].

Since v0 is a nonzero scalar, this implies that
∑

k∈Γi
X[s](k) ck does not

depend on i, and hence that
∑

k∈Γi
kαck does not depend on i for any

|α| = s. This completes the induction.

(b) ⇒ (a). Assume that
∑

k∈Γ ck = m and that
∑

k∈Γi
kαck is indepen-

dent of i for each 0 ≤ |α| < p. Then the matrices M[s,t] defined in (4.13)
do not depend on i for any 0 ≤ t ≤ s < p. We shall inductively define
scalars vα ∈ C

r so that v[s] = [vα]|α|=s satisfies (4.12) for 0 ≤ s < p. As a
consequence, statement (c) of Theorem 3.6 will be fulfilled.

Define v0 = 1. By hypothesis,
∑

k∈Γi
ck = 1 for i = 1, . . . ,m, so v[0] =

[v0] = 1 satisfies (4.12) for s = 0. Assume now, inductively, that v[s] =
[vα]|α|=s has been defined so that (4.12) is satisfied for 0 ≤ s < u. Since
A[u] is expansive, we know that I − A[u] is invertible. Therefore, we can
define

v[u] = (I −A[u])
−1

u−1
∑

t=0

M[u,t] A[t] v[t]. (4.14)

We must show that this v[u] satisfies (4.12) for s = u. First, rewrite (4.14)
as

v[u] = A[u] v[u] +
u−1
∑

t=0

M[u,t] A[t] v[t].
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Then, since Q[u,u](k) = I and
∑

k∈Γi
ck = 1, we have

∑

k∈Γi

u
∑

t=0

Q[u,t](k)A[t] v[t] ck

=
∑

k∈Γi

Q[u,u](k)A[u] v[u] ck +
u−1
∑

t=0

(

∑

k∈Γi

Q[u,t](k) ck

)

A[t] v[t]

= A[u] v[u] +

u−1
∑

t=0

M[u,t] A[t] v[t]

= v[u].

Thus (4.12) holds for s = u. �

4.8. Proof of Theorem 3.9

Proof of Theorem 3.9. (a) Define G[0](x) as in (4.9), i.e.,

G[0](x) = v0
∑

k∈Γ

f(x+ k).

Then the argument of the proof of Theorem 4.6 shows that G[0](x) = C a.e.,

with C = (v0f̂(0))|P |−1. Hence v0f̂(0) 6= 0 if and only if C 6= 0. However,
if translates of f along Γ are independent, then we must have C 6= 0 since
C =

∑

k∈Γ v0 f(x+ k) and v0 6= 0.

(b) Assume that the matrix ∆ = (1/m)
∑

k∈Λ ck has eigenvalues

λ1 = 1 and |λ2|, . . . , |λr| < 1. Define B = (A−1)T, and let M(ω) =
(1/m)

∑

k∈Λ ck e
−2πik·ω be the matrix-valued symbol of the refinement equa-

tion. Note that ∆ = M(0). The refinement equation implies that the

Fourier transform f̂ of f satisfies f̂(ω) = M(Bω) f̂(Bω). In particular,

f̂(0) = M(0) f̂(0) = ∆ f̂(0). (4.15)

We prove in the Appendix that since ∆∞ converges, the infinite matrix
product P (ω) =

∏∞
j=1 M(Bjω) converges uniformly on compact sets, and

that as a consequence f̂(ω) = P (ω) f̂(0). Hence we must have f̂(0) 6= 0, so

(4.15) implies that f̂(0) is the right 1-eigenvector for ∆.
On the other hand, since v0 = v0

∑

k∈Γi
ck and Γ is the disjoint union of

the Γi, we have

v0 = v0
1

m

m
∑

i=1

∑

k∈Γi

ck = v0∆.
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Since v0 is nonzero, it therefore is a left 1-eigenvector for ∆. However,
1 is a simple eigenvalue for ∆, and the dot product of the left and right

1-eigenvectors must be nonzero when 1 is simple, so v0f̂(0) 6= 0. �

5. THE QUINCUNX MATRIX

The quincunx matrix is A =

[

1 −1
1 1

]

. It maps the lattice Γ = Z
2 into

itself via an expansion by
√
2 and a rotation by π/4. The sublattice A(Γ )

is the quincunx lattice. The determinant of A is m = 2. If we choose digits

d1 = 0 =

[

0
0

]

and d2 =

[

1
0

]

,

then the attractor

K =

{ ∞
∑

n=1

A−nεn : εn ∈ {d1, d2}
}

=

2
⋃

i=1

A−1(K + di)

of the iterated function system (IFS) determined by A and d1, d2 has
Lebesgue measure 1, and therefore tiles R2 by translates along Z

2 [GM92].
The set K is commonly known as the “twin dragon” fractal. The charac-
teristic function of K is the solution to the refinement equation with r = 1,
Λ = {d1, d2}, and cd1

= cd2
= 1.

The quincunx matrix is a popular choice for the construction of nonsep-
arable two-dimensional wavelets [GM92], [KV92], [CD93], [Vil94]. We shall
write out explicitly the three lowest-order sum rule requirements from The-
orem 3.6(c) for the quincunx matrix for the general FSI case. We shall then
examine the much simpler PSI case, and apply our results to the family of
refinable functions constructed in [KV92].

5.1. Sum Rules for Multiple Refinable Functions (Quincunx Case)

We shall write out the “sum rules” of Theorem 3.6(c) for p ≤ 3. We let
the number r of refinable functions f1, . . . , fr be arbitrary.

First we must specialize our notation to the quincunx case. The lattice
Γ = Z

2 has two cosets under dilation by A, namely

Γ1 = A(Z2)− d1 = {Ak : k ∈ Z
2} =

{[

k1 − k2
k1 + k2

]

: k ∈ Z
2

}

Γ2 = A(Z2)− d2 =
{

Ak −
[

1
0

]

: k ∈ Z
2
}

=

{[

k1 − k2 − 1
k1 + k2

]

: k ∈ Z
2

}

.
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In order to write out the matrix A[s] and matrix of polynomials Q[s,t], we
must choose an ordering of the multi-indices α of degree |α| = s. We use
the ordering defined by (4.3). That is, for s = 0, 1, 2 the multi-indices of
degree s are ordered as follows:

s = 0 : (0, 0),

s = 1 : (1, 0) ≺ (0, 1),

s = 2 : (2, 0) ≺ (1, 1) ≺ (0, 2).

With this ordering, we have

X[0](x) = 1, X[1](x) =

[

x(1,0)

x(0,1)

]

=

[

x1

x2

]

,

X[2](x) =





x(2,0)

x(1,1)

x(0,2)



 =





x2
1

x1x2

x2
2



.

Using the definition X[s](Ax) = A[s] X[s](x), we therefore have

A[0] = 1, A[1] =

[

1 −1
1 1

]

, A[2] =





1 −2 1
1 0 −1
1 2 1



.

Using the definition X[s](x− y) =
∑s

t=0 Q[s,t](y)X[s](x), we have

Q[0,0](y) = I1 = 1,

Q[1,0](y) =

[

−y1
−y2

]

, Q[1,1](y) = I2 =

[

1 0
0 1

]

,

Q[2,0](y) =





y21
y1y2

y22



, Q[2,1](y) =





−2y1 0
−y2 −y1
0 −2y2



,

Q[2,2](y) = I3 =





1 0 0
0 1 0
0 0 1



.
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The matrices v[s] have the form

v[0] = [ v(0,0) ], v[1] =

[

v(1,0)
v(0,1)

]

, v[2] =





v(2,0)
v(1,1)
v(0,2)



,

with entries that are row vectors vα ∈ C
1×r.

Since m = 2 and Γ = Z
2, the sum rules in statement (c) of Theorem 3.6

can be rewritten

v[s] =
∑

k∈Γi

s
∑

t=0

Q[s,t](k)A[t] v[t] ck, i = 1, 2. (5.1)

Using the fact thatA[0] andQ[s,s](k) are identity matrices of the appropriate
sizes, we can therefore write (5.1) for s = 0, 1, 2 as

s = 0 : v[0] = v[0]
∑

k∈Γi

ck, (5.2)

s = 1 : v[1] =
∑

k∈Γi

(

Q[1,0](k) v[0] +A[1] v[1]
)

ck, (5.3)

s = 2 : v[2] =
∑

k∈Γi

(

Q[2,0](k) v[0] +Q[2,1](k)A[1] v[1] +A[2] v[2]
)

ck,
(5.4)

all for i = 1, 2. By Theorems 3.4 and 3.6, if there exists v[0] = v(0,0) such

that (5.2) holds and v(0,0)f̂(0) 6= 0, then f has accuracy at least p = 1. If

in addition there exists v[1] =

[

v(1,0)
v(0,1)

]

such that (5.3) holds, then f has

accuracy p = 2. If there is no such v[1], then f is limited to accuracy p = 1.
And so forth, each higher value of p requiring the existence of additional
matrices v[s].

We can further expand (5.2)–(5.4) in terms of the vectors vα that make
up the matrices v[s]. Expanding these equations using the values for A[s]

and Q[s,t](y) found earlier, we find that they are equivalent to the following
equations, each of which must hold for i = 1, 2.

s = 0 : v(0,0) = v(0,0)
∑

k∈Γi

ck,

s = 1 :





v(1,0)

v(0,1)



 =









∑

k∈Γi

(

−k1 v(0,0) + v(1,0) − v(0,1)
)

ck

∑

k∈Γi

(

−k2 v(0,0) + v(1,0) + v(0,1)
)

ck









,
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s = 2 :











v(2,0)

v(1,1)

v(0,2)











=



















∑

k∈Γi

(

k21 v(0,0) − 2k1 v(1,0) + 2k1 v(0,1) + v(2,0) − 2v(1,1) + v(0,2)
)

ck

∑

k∈Γi

(

k1k2 v(0,0) − (k1 + k2) v(1,0) + (−k1 + k2) v(0,1) + v(2,0) − v(0,2)
)

ck

∑

k∈Γi

(

k22 v(0,0) − 2k2 v(1,0) − 2k2 v(0,1) + v(2,0) + 2v(1,1) + v(0,2)
)

ck



















.

5.2. Sum Rules for a Single Refinable Function (Quincunx Case)

The sum rules for the PSI case (r = 1) are much simpler than for the
general case. By Theorem 3.7, in the PSI case for the quincunx matrix, the
sum rules for accuracy p are

∑

k∈Z2

ck = 2 and
∑

k∈Γ1

kαck =
∑

k∈Γ2

kαck, 0 ≤ |α| < p. (5.5)

If we let M(ω) = 1
2

∑

k∈Λ ck e
−2πik·ω be the symbol of the refinement equa-

tion, then these sum rules are precisely equivalent to the following “zeros
at (1/2, 1/2)” condition that plays a role in the results of [KV92], [CD93]:

M(0, 0) = 1 and (DαM)(1/2, 1/2) = 0, 0 ≤ |α| < p.

As an example, we apply the sum rules to the parameterized family of
refinable functions proposed by Kovačević and Vetterli in [KV92]. For each
a = (a0, a1, a2) ∈ R

3, consider the coefficients c = [ck]k∈Z2 defined by

c = ν(a)





−a1 −a0a1
−a2 −a0a2 −a0 1

a0a1a2 −a1a2



,

where ν(a) is a normalization factor chosen so that
∑

ck = 2. We place the
0 index at the coefficient −a0a2. For this example, the sum rules in (5.5)
hold for p = 1 if and only if

−a0 − a1 − a2 + a0a1a2 = −a0a1 − a0a2 − a1a2 + 1. (5.6)
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For accuracy p = 2 we require in addition that

−a0a1−a1a2+2 = a2−a0 and −a0a1+a1a2 = −a1−a0a1a2. (5.7)

The solutions to the system of nonlinear equations in (5.6) and (5.7) are

a0 = ±
√
3, a1 = ±

√
3, a2 = 2∓

√
3, (5.8)

a0 = ±
√
3, a1 = 0, a2 = 2±

√
3. (5.9)

In any of these cases there is an integrable solution f to the refinement
equation, and we conclude that the accuracy of this solution is at least
p = 2. It is easy to check that none of the choices in (5.8) or (5.9) satisfy the
sum rules in (5.5) for p = 3, and therefore the accuracy of these f is exactly
p = 2, i.e., both constant and linear polynomials can be exactly reproduced
from translates of f . Kovačević and Vetterli [KV92] conjectured that the
solutions f resulting from the choices in (5.8) are continuous. Cohen and
Daubechies [CD93] conjectured the same for the solutions resulting from
the choice a2 = 0 (which allows only p = 1). Villemoes [Vil94] proved that
the solutions from (5.8) are continuous, while those from the choice a2 = 0
are discontinuous. In any case, these f have orthogonal translates, and
therefore can be used to construct multiresolution analyses and orthonormal
wavelet bases for L2(R2).

APPENDIX

Convergence of the Infinite Matrix Product

Suppose that f :Rd → C
r satisfies the refinement equation (1.1). Define

m = | det(A)| and B = (A−1)T. If f is integrable, then its Fourier transform
will satisfy the equation

f̂(ω) = M(Bω) f̂(Bω), (A.1)

where M(ω) is the matrix-valued symbol of the refinement equation, defined
by M(ω) = (1/m)

∑

k∈Λ ck e
−2πik·ω. Iterating (A.1), we have

f̂(ω) =

( n
∏

j=1

M(Bjω)

)

f̂(Bnω) = Pn(ω) f̂(B
nω). (A.2)

Since A is expansive, the spectral radius of B satisfies ρ(B) < 1. Therefore

Bn → 0 as n → ∞. Since f̂ is continuous, it follows that f̂(Bnω) → f̂(0) as
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n → ∞. If it were the case that Pn(ω) converged as n → ∞, then it would
follow from (A.2) that

f̂(ω) =

( ∞
∏

j=1

M(Bjω)

)

f̂(0) = P (ω) f̂(0).

These remarks remain valid even if f is merely a compactly supported tem-

pered distribution, since, by the Paley–Wiener theorem for distributions, f̂
will still be a continuous function in this case.

In this Appendix, we will provide a condition on the matrix

∆ = M(0) =
1

m

∑

k∈Λ

ck

that is both necessary and sufficient for the convergence of the infinite
matrix product P (ω) =

∏∞
j=1 M(Bjω) for each ω ∈ R

d. This generalizes a

one-dimensional result of [HC96] to the higher-dimensional setting.
The necessary condition is immediate, since P (0) =

∏∞
j=1 M(0) = ∆∞

converges if and only if the matrix ∆ has eigenvalues λ1 = · · · = λs = 1
and |λs+1|, . . . , |λr| < 1, with the eigenvalue 1 nondegenerate. We will show
that this condition is also sufficient for the convergence of P (ω).

The following two lemmas are elementary.

Lemma A.1. Let {an}∞n=0 be a sequence of complex-valued functions on a

set K such that limn→∞ an(ω) = 0 uniformly on K. Given λ ∈ C, define

sn(ω) = an(ω) + λan−1(ω) + · · ·+ λna0(ω).

If |λ| < 1, then limn→∞ sn(ω) = 0 uniformly on K.

Lemma A.2. Assume that S is an r×r matrix with eigenvalues λ1 = · · · =
λs = 1 and |λs+1|, . . . , |λr| < 1, with the eigenvalue 1 nondegenerate. Then

there exists a vector norm ‖ · ‖ on C
r such that the corresponding matrix

norm of S is ‖S‖ = 1.

Theorem A.3. Assume that ∆ = M(0) = (1/m)
∑

k∈Λ ck has eigenval-

ues λ1 = · · · = λs = 1 and |λs+1|, . . . , |λr| < 1, with the eigenvalue 1
nondegenerate. Then the infinite matrix product

P (ω) =
∞
∏

j=1

M(Bjω)

converges uniformly on compact sets to a continuous matrix-valued func-

tion.
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Proof. We will use a norm | · | on the vector space R
d and a norm ‖ · ‖ on

the vector space Cr. We use the same symbols to denote the matrix norms
induced by these vector norms. We let |ω| = (|ω1|2 + · · ·+ |ωd|2)1/2 denote
the Euclidean norm on R

d. By Lemma A.2, there exists a vector norm
‖ · ‖ on C

r so that the corresponding matrix norm of the r× r matrix ∆ is
‖∆‖ = 1.

Since A is expansive, the d × d matrix B = (A−1)T has spectral radius
ρ(B) < 1. Fix θ with ρ(B) < θ < 1. Then by standard results, there exists
a constant R so that the matrix norm of Bn satisfies

|Bn| ≤ Rθn, n ≥ 0.

Now, if {Ej}nj=1 is any collection of r × r matrices, then it follows from
‖∆‖ = 1 that

∥

∥

∥

∥

n
∏

j=1

Ej

∥

∥

∥

∥

≤
n
∏

j=1

‖∆+ (Ej −∆)‖

≤
n
∏

j=1

(1 + ‖Ej −∆‖)

≤
n
∏

j=1

e‖Ej−∆‖

= exp

( n
∑

j=1

‖Ej −∆‖
)

. (A.3)

Note that

‖M(ω)−∆‖ = ‖M(ω)−M(0)‖

=

∥

∥

∥

∥

1

m

∑

k∈Λ

(e−2πik·ω − 1) ck

∥

∥

∥

∥

≤ 1

m

(

max
k∈Λ

‖ck‖
)

∑

k∈Λ

|e−2πik·ω − 1|

≤ 2π

m

(

max
k∈Λ

‖ck‖
)

∑

k∈Λ

|k · ω|

≤ 2π

m

(

max
k∈Λ

‖ck‖
)

(

∑

k∈Λ

|k|
)

|ω|

= C1 |ω|.
As a consequence,

‖M(Bjω)−∆‖ ≤ C1 |Bjω| ≤ C1 |Bj | |ω| ≤ C1 Rθj |ω|, (A.4)



MULTIDIMENSIONAL REFINABLE FUNCTIONS 49

and therefore

n
∑

j=1

‖M(Bjω)−∆‖ ≤ C1 R |ω|
n
∑

j=1

θj ≤ C2 |ω|. (A.5)

Hence, if we define

Pn(ω) =

n
∏

j=1

M(Bjω),

then it follows from (A.3) and (A.5) that ‖Pn(ω)‖ ≤ eC2|ω|. In particular,
if K is compact, then

CK = sup
n

sup
γ∈K

‖Pn(γ)‖ < ∞. (A.6)

Now fix any eigenvalue λ for∆. Let v be any corresponding λ-eigenvector,
normalized so that ‖v‖ = 1. Then for any ω ∈ K, we have from (A.4) and
(A.6) that

‖Pn(ω)v − λPn−1(ω)v‖ = ‖Pn−1(ω) (M(Bnω)v −∆v)‖
≤ ‖Pn−1(ω)‖ ‖M(Bnω)−∆‖ ‖v‖
≤ CK C1 Rθn |ω|. (A.7)

Note that (A.7) implies immediately that Pn(ω)v converges uniformly on
K if λ = 1. Consider then the other eigenvalues, which all satisfy |λ| < 1.
Defining P0(ω) = I, we have

‖Pn(ω)v‖ ≤ ‖Pn(ω)v − λPn−1(ω)v‖ + ‖λPn−1(ω)v − λ2Pn−2(ω)v‖

+ · · · + ‖λn−1P1(ω)v − λnP0(ω)v‖ + ‖λnP0(ω)v‖

≤ CK C1 R |ω|
(

θn + θn−1 |λ| + · · · + θ |λ|n−1 + |λ|n
)

.

By Lemma A.1 or by direct computation, we conclude limn→∞ Pn(ω)v = 0
uniformly on K when |λ| < 1.

If ∆ is diagonalizable, then there is a basis {v1, . . . , vr} for Cr consisting
of eigenvectors of ∆. We have shown that Pn(ω)vk converges uniformly
on K for each of these vk. Therefore, we can conclude that Pn(ω) itself
converges uniformly on compact sets when ∆ is diagonalizable.

For nondiagonalizable ∆, we proceed by considering the Jordan decom-
position of ∆. Since the eigenvalue 1 for ∆ is nondegenerate, we need
only consider those eigenvalues λ with |λ| < 1. Let U = {u ∈ C

r :
(∆ − λ)ku = 0 for some k}. There exists a smallest integer ℓ > 0 such
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that (∆ − λ)ℓu = 0 for all u ∈ U . By standard Jordan techniques, there
exists a basis {u1, . . . , uℓ} for U such that

∆u1 = λu1 and ∆uk = λuk + uk−1, k = 2, . . . , ℓ.

We may assume that the uk are normalized so that ‖uk‖ = 1.
Since u1 is a λ-eigenvector for ∆, we know from the above calculations

that limn→∞ Pn(ω)u1 = 0 uniformly on K. Assume, inductively, that
limn→∞ Pn(ω)uk−1 = 0 uniformly on K for some k > 1. Then, by (A.4)
and (A.6),

‖Pn(ω)uk − λPn−1(ω)uk − Pn−1(ω)uk−1‖
≤ ‖Pn−1(ω)‖ ‖M(Bnω)uk − λuk − uk−1‖
≤ CK ‖M(Bnω)uk −∆uk‖
≤ CK ‖M(Bnω)−∆‖ ‖uk‖
≤ CK C1 Rθn |ω|.

Therefore, adding and subtracting conveniently, we have

‖Pn(ω)uk‖ ≤ ‖Pn(ω)uk − λPn−1(ω)uk − Pn−1(ω)uk−1‖

+ ‖λPn−1(ω)uk − λ2Pn−2(ω)uk − λPn−2(ω)uk−1‖

+ · · · + ‖λn−1P1(ω)uk − λnP0(ω)uk − λn−1P0(ω)uk−1‖
+ ‖λnP0(ω)uk‖ + ‖Pn−1(ω)uk−1‖

+ ‖λPn−2(ω)uk−1‖ + · · · + ‖λn−1P0(ω)uk−1‖

≤ CK C1 R |ω|
(

θn + θn−1 |λ| + · · · + θ |λ|n−1 + |λ|n
)

+ an−1(ω) + |λ| an−2(ω) + · · · + |λ|n−1 a0(ω),

where an(ω) = ‖Pn(ω)uk−1‖. It follows from Lemma A.1 that Pn(ω)uk

converges to zero uniformly on K, completing the induction.
It remains only to note that since each Pn(ω) is continuous and Pn(ω)

converges uniformly on compact sets, the limit must be continuous. �

Corollary A.4. Assume that ∆ = M(0) = (1/m)
∑

k∈Λ ck has eigen-

values λ1 = · · · = λs = 1 and |λs+1|, . . . , |λr| < 1, with the eigenvalue

1 nondegenerate. If there exists a distributional solution f to the refine-

ment equation (1.1) whose Fourier transform f̂ is a continuous function,

then f̂(ω) = P (ω) f̂(0). As a consequence, f̂(0) 6= 0, and f̂(0) is a right

1-eigenvector for ∆.
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