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Abstract. Microlocal filtering is performed with adapted orthonormal multiwavelets and smooth
frame multiwavelets, which are derived from several generators. The values of the wavelet coefficients
of a function give a rough estimate of its microlocal content, as shown by an example. Multidirectional
denoising of images is presented as the action of a pseudodifferential operator which is the product
of directional diffusion equations.
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1. Introduction. Wavelets have proven to be useful decomposition tools in a
wide variety of applications throughout mathematics, science, and engineering. For
example, the still-image compression standard known as JPEG2000 includes a wavelet
option and the next video compression standard, MPEG-4, will be entirely wavelet
based.

Hyperfunctions, which were introduced by Sato [13] and extensively developed by
the Kyoto school of mathematics, can be considered to be sums of boundary values of
holomorphic functions defined in infinitesimal wedges. Hyperfunctions are powerful
tools in several applications; for example, vortex sheets in two-dimensional fluid dy-
namics are a realization of one-dimensional hyperfunctions. Analytic continuation in
domains of special forms plays a key role in the theory of hyperfunctions. Microlocal
analysis plays an important role in the theory of hyperfunctions, partial differential
operators, and many other areas. In this theory, one can define the product of dis-
tributions and discuss the partial regularity of multidimensional distributions with
respect to any independent variable.

In this paper, we discuss some particular multiwavelet constructions which are
suited for microlocal filtering. In particular, expansion of a function or signal in terms
of these multiwavelet bases or tight frames gives a rough estimate of its microlocal
content, revealing directions of analyticity. The resolution of these multiwavelets
in any given direction of analyticity can be made as fine as desired, at the cost
of increasing the multiplicity of the multiwavelet basis or frame. We discuss the
numerical implementation of these filters and apply them to multidirectional denoising
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Fig. 2.1. Infinitesimal wedge Γ0.

of two-dimensional images.

2. Microlocal Analysis. Our approach to microlocal analysis for Schwartz dis-
tributions is based on the theory of hyperfunctions, as introduced by Sato [13] and
developed in [12] for the theory of linear partial differential equations with constant
coefficients. A more complete treatment of microlocal filtering with multiwavelets can
be found in [2]. Other treatments are found in [1] and [3]. A main goal is to find
directions in which a function can be continued analytically for every point x ∈ R

n.

2.1. Hyperfunctions in R
n. A hyperfunction is defined as a sum of general

boundary values of holomorphic functions in wedges whose edges are open subsets of
R

n. More precisely, a hyperfunction f : Rn → C is defined to be a sum

f(x) =

N∑

j=1

Fj(x+ iΓj0), x ∈ Ω,

of boundary values

Fj(x+ iΓj0) = lim
y→0
y∈Γj0

Fj(x+ iy)

of holomorphic functions Fj(z) in infinitesimal wedges Γj0 with edge Ω ⊂ R
n (see

Fig. 2.1).

2.2. Microanalyticity. To characterize the microanalyticity of a tempered dis-
tribution f ∈ S ′(Rn) by its Fourier transform, f̂ , we introduce the dual cone, Γ◦, of
Γ, defined by

Γ◦ := {ξ ∈ R
n ; y · ξ ≥ 0 for every y ∈ Γ}.

Figure 2.2 shows three examples of cones Γ, their dual cones Γ◦, and their complements
(Γ◦)c = R

n \ Γ◦.
Lemma 2.1. Let Γ be an open convex cone. A tempered distribution f(x) can be

represented as the limit f(x + iΓ0) of a slowly increasing holomorphic function f(z)

in the infinitesimal wedge R
n + iΓ0 if and only if the Fourier transform f̂ of f is

exponentially decreasing in every closed proper subcone Γ′ ⊂⊂ (Γ◦)c = R
n \ Γ◦.

3. Microlocal Filtering. Given f ∈ L2(Rn), let fjk(x) denote the scaled and
shifted function

fjk(x) = 2nj/2f(2jx− k), j ∈ Z, k ∈ Z
n.
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Fig. 2.2. Open cone Γ, dual cone Γ◦, and complement (Γ◦)c of dual cone.

Let D be a finite index set with card(D) = (2n − 1)d, d ∈ N. A system

{ψδ
jk}δ∈D,j∈Z,k∈Zn ⊂ L2(Rn)

is called a multiwavelet tight frame with frame bound A, and in this case Ψ = {ψδ}δ∈D

is called a set of tight frame multiwavelets, if

f =
1

A

∑

δ∈D,
j∈Z,k∈Z

n

〈f, ψδ
jk〉ψ

δ
jk, ∀ f ∈ L2(Rn). (3.1)

If {ψδ
jk}δ∈D,j∈Z,k∈Zn ⊂ L2(Rn) is an orthonormal basis for L2(Rn) then it is called

an orthonormal multiwavelet basis, and in this case Ψ = {ψδ}δ∈D is called a set of
orthonormal multiwavelets.

Although a tight frame allows the basis-like representations in equation (3.1), a
frame need not be an orthonormal or even independent sequence. Frames provide
a useful model for obtaining signal decompositions in cases where redundancy, ro-
bustness, oversampling, and irregular sampling play a role. We refer to [4], [10], or
[11] for basic information on frames and wavelets. It can be shown that Ψ is a set
of orthonormal multiwavelets if and only if {ψδ

jk}δ∈D,j∈Z,k∈Zn is a multiwavelet tight

frame with frame bound A = 1 and ‖ψδ‖L2(Rn) = 1 for δ ∈ D.

Problems.

• Is it possible to construct orthonormal or tight frame multiwavelets Ψ =
{ψδ}δ∈D corresponding to each microanalytic direction S

n−1?
• Is it possible to obtain information on the microlocal content of f ∈ L2(Rn)
from the wavelet coefficients 〈f, ψδ

jk〉?
• Can orthonormal or tight frame multiwavelet filtering separate microlocal
contents?

We shall construct orthonormal multiwavelet bases or tight frames which enable
us to obtain information on the microlocal content of signals or functions. As this
separation of microlocal contents can be considered as a filtering operation, we call it
microlocal filtering .

3.1. Orthonormal multiwavelets in R. The one-dimensional case is summa-
rized in the following theorem, where [−2π,−4π] means [−4π,−2π], and similarly
later.

Theorem 3.1. Define ψ± by ψ̂± = χ[±2π,±4π] (Fig. 3.1). Then Ψ := {ψ+, ψ−}
is a set of orthonormal multiwavelets. Define the orthogonal projections P± by

P±f :=
∑

j,k∈Z

〈f, ψ±
jk〉ψ

±
jk.
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Fig. 3.1. The Fourier transform of ψ±.

Then P±f(x) can be extended analytically to {Im z > 0} and {Im z < 0}, respectively.
Taken individually, ψ± generates an orthonormal wavelet basis for the classical

Hardy space H2(R±) defined by

H2(R±) =
{
f ∈ L2(R) ; f̂(ξ) = 0 a.e. ξ ≤ (≥) 0

}
.

This orthonormal multiwavelet basis was discussed in [5], and smooth tight mul-
tiwavelet frames were also constructed there (see also the discussion in [11, Section
8.4]). In the one-dimensional case, there are only two directions of analyticity, while
in the n-dimensional case, the set of all microanalytic directions is Sn−1, which is an
infinite set. In Theorem 3.2, we will give a generalization of Theorem 3.1 to the n-
dimensional case. An n-dimensional smooth multiwavelet tight frame will be given in
Theorem 3.3. Using an expansion into these bases or frames, it is possible to tell fairly
well in which directions f is microanalytic. The price for good angular resolution in
S
n−1 is the need for many multiwavelets.

3.2. Orthonormal multiwavelets in R
n. The following notation will be used.

• η = (η1, . . . , ηn) ∈ H := {±1}n.
• ε = (ε1, . . . , εn) ∈ E := {0, 1}n \ {0}, j ∈ Z+.
• ε. ∗ η := (ε1η1, . . . , εnηn).
• Qj,ε,η :=

{∏n
k=1 [ηk(ℓk−1), ηkℓk]+2j(ε.∗η) : 1 ≤ ℓ1, . . . , ℓn ≤ 2j , ℓ1, . . . , ℓn ∈

N
}
.

• 2πQj,ε,η := {2πQ ; Q ∈ Qj,ε,η}.
• Z

E×H
+ is the set of all functions from E ×H to Z+.

Theorem 3.2. Fix j ∈ Z+, ε ∈ E, η ∈ H. For Q ∈ Qj,ε,η, define ψQ by

ψ̂Q = χ2πQ,

where χ2πQ is the characteristic function of the cube 2πQ. For ρ ∈ Z
E×H
+ , let

Qρ :=
⋃

(ε,η)∈E×H

2πQρ(ε,η),ε,η.

Then Ψ := {ψQ}Q∈Qρ
is a set of orthonormal multiwavelets.

Figure 3.2 illustrates the 2-D multiwavelets constructed in Theorem 3.2. Mul-
tiwavelets are masks in Fourier space — they are characteristic functions of cubes
2πQ. The left part of Figure 3.2 shows 12 multiwavelet functions. For finer resolution
in Fourier space, we need a greater number of multiwavelets. The right part of the
Figure 3.2 shows 27 multiwavelet functions.

3.3. Smooth tight wavelet frames in R
n. Smooth tight multiwavelet frames

are obtained by convolving characteristic functions of cubes πQ so that the support
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Fig. 3.2. 2-D orthonormal multiwavelet functions in Fourier space.

of the smoothed functions have support inside cubes 2πQ. This is achieved by con-
sidering the next inside annulus of cubes πQ in the left part of Fig. 3.2.

Let ϑ(t) be a C∞
0 (R)-function of one variable satisfying

ϑ(t) ≥ 0, ϑ(t) = ϑ(−t),

∫

R

ϑ(t) dt = 1, ϑ(t) =

{
1, |t| ≤ 1

3 ;

0, |t| ≥ 2
3 .

For α > 0 and ξ = (ξ1, ξ2, . . . , ξn) ∈ R
n, let

ϑα(ξ) =
1

αn

n∏

j=1

ϑ
(ξj
α

)
.

Theorem 3.3. Fix j ∈ Z+, ε ∈ E, η ∈ H, and α ∈ (0, 1/2). Define

λQ(ξ) := (ϑα ∗ χπQ)(ξ) =

∫

Rn

ϑα(ξ − ζ)χπQ(ζ) dζ, Q ∈ Qj,ε,η,

where χπQ is the characteristic function of the cube πQ. For ρ ∈ Z
E×H
+ , let

Q̃ρ :=
⋃

(ε,η)∈E×H

πQρ(ε,η),ε,η, τρ(ξ) :=
∑

j∈Z,Q∈Q̃ρ

|λQ(2
jξ)|2,

and, for Q ∈ Q̃ρ, define ψQ(x) by

ψ̂Q(ξ) := τρ(ξ)
−1/2 λQ(ξ).

Then Ψ := {ψQ}Q∈Q̃ρ
is a set of tight frame multiwavelets.

Theorem 3.3 follows from Theorem 3.4, which is essentially [9, Theorem 1].

Theorem 3.4. Ψ = {ψδ}δ∈D is a set of tight frame multiwavelets with frame

bound A = 1 if and only if the following two equalities are satisfied:

∑

δ∈D
j∈Z

|ψ̂δ(2jξ)|2 = 1, a.e. ξ ∈ R
n, (3.2)
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Fig. 4.1. Left: Positive figure of boy behind an almost invisible zigzag grid. Right: Negative

figure localizing the zigzag grid downward singularities.

and

tq(ξ) = 0, a.e. ξ ∈ R
n, ∀ q ∈ Z

n\(2Z)n, (3.3)

where

tq(ξ) :=
∑

δ∈D
j∈Z+

ψ̂δ(2jξ) ψ̂δ(2j(ξ + 2πq)), Z+ := N ∪ {0}. (3.4)

Note that q ∈ Z
n\(2Z)n means that at least one component qj of q is an odd

integer.

4. Numerical applications. Smooth frame wavelets {ψℓ
j,k} can locate the sin-

gularity of a figure f by filtering f̂ away from the origin, since singularities are as-
sociated with high frequencies. Numerically, figures are discretized over rectangular
matrices. In the left part of Fig. 4.1, the boy is shown behind a fine zigzag grid.
Since the smooth filters consisting of tapered characteristic functions of squares cover
a 287×287 matrix [6], the boy image is embedded into the central part of a 287×287
matrix.

The smooth filters consist of tapered characteristic functions of squares covering
a 287 × 287 matrix. By filtering along the secondary diagonal with a smooth frame
wavelet with support in the upper right corner of f̂ , at a right angle with the downward
parts of the grid, these downward parts are localized by means of the frame coefficients

〈f, ψℓ
j,k〉 =

1

2π
〈f̂ , ψ̂ℓ

j,k〉,

as can be seen in the right part of Fig. 4.1. The upward parts of the grid can be
localized by filtering along the main diagonal in the upper left corner of f̂ .

4.1. Multidirectional denoising. Multidirectional filtering by a product filter
[7] consists in applying the one-dimensional diffusion operator in several directions
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with a small step size in Fourier space. This operation removes some random and
Gaussian noise without oversmearing edges. Once the filter is constructed for images
of a given size, its application on a sequence of noisy images of the same size is very
fast.

Diffusion in the x-direction is governed by ut = uxx, in the y-direction by ut = uyy.
To diffuse in the direction of a line that makes an angle of θ with the x-axis, the
governing equation is

ut = cos2 θ uxx + 2 sin θ cos θ uxy + sin2 θ uyy.

Applying the two-dimensional Fourier transform

û(ξ, η) =

∫ ∞

−∞

∫ ∞

−∞

u(x, y) e−i(ξx+ηy) dx dy.

to the diffusion equation, we obtain the equation

ût = −ξ2 cos2 θ û− 2 ξ η sin θ cos θ û− η2 sin2 θ û

= −[ξ cos θ + η sin θ]2 û,

whose solution is

û(ξ, η, t) = û(ξ, η, 0) exp(−[ξ cos θ + η sin θ]2 t).

One can diffuse noise in many directions, specified by angles θk, by means of the
equation

ut =
∑

k

[cos2 θk uxx + 2 sin θk cos θk uxy + sin2 θk uyy].

In the Fourier domain, this equation becomes

ût = −

(∑

k

[ξ cos θk + η sin θk]
2

)
û,

with solution

û(ξ, η, t) = û(ξ, η, 0) exp

(
−
∑

k

[ξ cos θk + η sin θk]
2 t

)
:= û(ξ, η, 0) g(ξ, η, t).

The denoised image is given by the pseudodifferential operator

u(x, y, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

ei(ξx+ηy) g(ξ, η, t) û(ξ, η, 0) dξ dη.

Therefore, if û(ξ, η, 0) is the Fourier transform of a noisy image, then applying
the multidirectional operator in the Fourier domain reduces to matrix multiplication
with an appropriately chosen value of t.

Signal-to-noise ratio (SNR) is defined by the formula

SNR =

∑m
i=1

∑n
j=1 u(i, j)

2

∑m
i=1

∑n
j=1 [u(i, j)− U(i, j)]2

=
‖u‖2F

‖u− U‖2F
, (4.1)
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Noisy Image Results of Product Filter Algorithm

Fig. 4.2. Left: Noisy figure with SNR = 12.7213. Right: Denoised image with SNR = 15.5816.

where [u(i, j)] and [U(i, j)] represent the original and noisy images, respectively, as
matrices and ‖ · ‖F is the Frobenius matrix norm. Ideally, if noise were perfectly
removed from a noisy image, the result would be u = U and SNR is infinite. In
general, a higher SNR value signifies a better result, though visual observation is
the true measurement, as two matrices may have the same norm and yet appear
completely different when viewed as images.

The boy figure with added random noise of intensity 50, with signal to noise ratio
SNR = 12.7213, is shown in the left part of Fig 4.2. This noisy image is denoised
with the multidirectional filter with 256 directions and t = 0.0003. The result, with
SNR = 15.5816, is shown in the right part of Fig 4.2.
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