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A Gabor system is a set of time-frequency shifts S(g,Λ) = {e2πibxg(x− a)}(a,b)∈Λ of

a function g ∈ L2(Rd). We prove that if a finite union of Gabor systems
Sr

k=1 S(gk, Λk)

forms a frame for L2(Rd) then the lower and upper Beurling densities of Λ =
Sr

k=1 Λk

satisfy D−(Λ) ≥ 1 and D+(Λ) < ∞. This extends recent work of Ramanathan and

Steger. Additionally, we prove the conjecture that no collection
Sr

k=1{gk(x − a)}a∈Γk

of pure translates can form a frame for L2(Rd). c©1999 Academic Press
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1. INTRODUCTION

For each a, b ∈ Rd, let Ta and Mb denote the translation and modulation operators
on L2(Rd) defined by

Tag(x) = g(x − a) and Mbg(x) = e2πibxg(x),

where bx = b1x1 + · · ·+ bdxd. A time-frequency shift is a composition of modulation and
translation, i.e., it has the form

MbTag(x) = e2πibxg(x − a).
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If Γ ⊂ Rd, then the collection of translates of g along Γ is defined to be

T (g, Γ) = {Tag}a∈Γ.

If Λ ⊂ R2d, then the collection of time-frequency shifts of g along Λ is defined to be

S(g, Λ) = {MbTag}(a,b)∈Λ.

We refer to S(g, Λ) as the Gabor system generated by g and Λ.
Gabor systems which form frames for L2(Rd) have a wide variety of applications.

One important problem is therefore to determine sufficient conditions on g and Λ which
imply that S(g, Λ) is a frame. In the case that d = 1 and Λ is a regular lattice of the
form aZ × bZ, sufficient conditions for S(g, Λ) to form a frame for L2(R) were found by
Daubechies [4]. A generalization of this result requiring weaker assumptions, which also
applies when S(g, Λ) only forms a frame for its closed span instead of all of L2(R), was
obtained recently in [2].

Our point of view in this paper is somewhat different, in that we are concerned with
the connection between density properties of Λ and frame properties of S(g, Λ), and the
analogous problem for systems T (g, Γ) of pure translates. For the case of Gabor systems,
there is a rich literature on this subject, especially when Λ is the rectangular lattice
Λ = aZd × bZd. We briefly review here some of the main results connecting the density
of Λ to properties of S(g, Λ), and refer to the research-survey [1] for a more thorough
historical discussion and a review of properties of Gabor systems. In addition to the
papers that we discuss explicitly below, some relevant related articles include [9-11, 15].

For simplicity, consider the one-dimensional setting d = 1 and a rectangular lattice
Λ = aZ × bZ. In this case, Rieffel proved (as a corollary of results on C∗ algebras)
that S(g, Λ) is incomplete in L2(R) if ab > 1 [14]. The algebraic structure of the lattice
is crucial to this result, as the proof follows from computing the coupling constant of
the von Neumann algebra generated by the operators {MmbTna}m,n∈Z. For the case
that ab > 1 is rational, Daubechies provided a constructive proof of the incompleteness
of S(g, Λ) through the use of the Zak transform, which is again an algebraic tool highly
dependent on the lattice structure of Λ = aZ×bZ [4]. Ramanathan and Steger introduced
a technique that applies to countable, non-lattice sets Λ that are uniformly separated,
i.e., there is a minimum distance δ between elements of Λ [13]. It is possible to define
an upper Beurling density D+(Λ) and lower Beurling density D−(Λ) for such sets (the
precise definition of density, along with other fundamental concepts used in this paper,
is given in Section 2). For example, for the lattice Λ = aZ × bZ these two densities
coincide and equal 1/(ab), hence this lattice is said to have uniform Beurling density
D(Λ) = 1/(ab). Ramanathan and Steger proved for arbitrary uniformly separated sets Λ
that if D−(Λ) < 1 then S(g, Λ) is not a frame. Thus, in the case that Λ = aZ × bZ, this
can be viewed as a weak version of the Rieffel incompleteness result. On the other hand,
the Ramanathan/Steger result applies to a far broader class of time-frequency translates
than does the Rieffel result. Moreover, Ramanathan and Steger were able to recapture by
their techniques the full Rieffel incompleteness result in the case that Λ = aZ×bZ. In light
of the above discussion, Ramanathan and Steger therefore conjectured that S(g, Λ) must
be incomplete whenever Λ is a uniformly separated set satisfying D−(Λ) < 1. Walnut
and Heil showed that this conjecture is false by constructing for each ε > 0 a function
g ∈ L2(R) and a non-lattice Λ ⊂ R2 such that S(g, Λ) is complete in L2(R) yet Λ has
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uniform Beurling density D(Λ) < ε [1]. Hence the algebraic structure of Λ is in fact
critical for the Rieffel incompleteness result.

In this paper, we extend and apply the Ramanathan/Steger density results. The
extension is to higher dimensions, to multiple generating functions, and to completely
arbitrary sets of time-frequency shifts. To state our result, for each k = 1, . . . , r let gk

be an element of L2(Rd) and let Λk = {(ak,i, bk,i)}i∈Ik
be a sequence of points in R2d.

Unless specified otherwise, we place no restrictions on the sequences Λk. For example, the
index set Ik may be countable or uncountable, and repetitions of points in Λk are allowed.
For simplicity, we will write Λk ⊂ R2d, although we always mean that Λk is a sequence
of points from R2d and not merely a subset of R2d. Define an index set I = {(i, k) :
i ∈ Ik, k = 1, . . . , r} and sequence Λ = {(ak,i, bk,i)}(i,k)∈I = {(ak,i, bk,i)}i∈Ik ,k=1,...,r,
i.e., Λ is the sequence obtained by amalgamating Λ1, . . . , Λr. For simplicity, we write
Λ =

⋃r
k=1 Λk, and say that Λ is the disjoint union of Λ1, . . . , Λr. The Gabor system

generated by g1, . . . , gr and Λ1, . . . , Λr is then
⋃r

k=1 S(gk, Λk), the disjoint union of the
Gabor systems S(gk, Λk). With this notation, our first main result is the following.

Theorem 1.1. For each k = 1, . . . , r, choose a nonzero function gk ∈ L2(Rd) and an

arbitrary sequence Λk ⊂ R2d. Let Λ be the disjoint union of Λ1, . . . , Λr.

(a) If
⋃r

k=1 S(gk, Λk) possesses an upper frame bound for L2(Rd), then D+(Λ) < ∞.

(b) If
⋃r

k=1 S(gk, Λk) is a frame for L2(Rd), then D−(Λ) ≥ 1.

We remark that the conclusion in part (a) of Theorem 1.1 that Λ has finite upper
Beurling density is equivalent to the statement that Λ, and hence each Λk, is relatively
uniformly separated, i.e., is a finite union of uniformly separated sequences (and hence
must be countable). The proof of Theorem 1.1 is given in Section 3. The result of
Ramanathan and Steger in [13] corresponds to the special case of Theorem 1.1(b) with
d = 1 and k = 1 and with the added assumption that Λ is uniformly separated and
satisfies D+(Λ) < ∞.

One useful feature of Gabor frames
⋃

k S(gk, Λk) generated by functions gk that are well
localized in both time and frequency is that if a function f is expanded in this frame, then
a perturbation of f that is well localized in both time and frequency will have a local effect
on the frame coefficients. By comparison, a frame of the form

⋃

k T (gk, Γk) consisting
solely of translates of finitely many functions gk would have the desirable property that
perturbations localized solely in time have localized effects on the frame coefficients. In
this regard, Olson and Zalik proved that there do not exist any Riesz bases for L2(R)
generated by translates of a single function [12], and Christensen conjectured that there
are no frames for L2(R) of this form [3]. Since T (g, Γ) = S(g, Γ × {0}), systems of
translates can be considered to be special cases of Gabor systems. We show in Section 4
that Theorem 1.1 implies that there are no frames for L2(Rd) of the form

⋃

k T (gk, Γk).
Moreover, we give a direct proof of the following refinement of this statement.

Theorem 1.2. For each k = 1, . . . , r, choose a nonzero function gk ∈ L2(Rd) and an

arbitrary sequence Γk ⊂ Rd. Let Γ be the disjoint union of Γ1, . . . , Γr.

(a) If
⋃r

k=1 T (gk, Γk) possesses an upper frame bound for L2(Rd), then D+(Γ) < ∞.

(b) If
⋃r

k=1 T (gk, Γk) possesses a lower frame bound for L2(Rd), then D+(Γ) = ∞.
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2. NOTATION AND PRELIMINARIES

2.1. General Notation

We use the Euclidean norm |x| =
√

x2
1 + · · · + x2

d on Rd. We denote the dot product

on Rd by a simple juxtaposition, i.e., xy = x1y1 + · · · + xdyd.
For x ∈ Rd and h > 0 we let Qh(x) denote the cube centered at x with side lengths h:

Qh(x) =

d
∏

j=1

[xj − h/2, xj + h/2).

In particular, {Qh(hn)}n∈Zd is a disjoint cover of Rd. To distinguish between cubes in
Rd and those in R2d, we write Qh(x, y) = Qh(x) × Qh(y) for a cube in R2d.

The Lebesgue measure of E ⊂ Rd is denoted by |E|. In particular, the volume of the
cube Qh(x) is |Qh(x)| = hd. The number of points in E ⊂ Rd is denoted by #E.

The L2-inner product is 〈f, g〉 =
∫

f(x) g(x) dx. The short-time Fourier transform of

f ∈ L2(Rd) against g ∈ L2(Rd) is

Sgf(a, b) = 〈f, MbTag〉.

We have Sgf ∈ L2(R2d) ∩ C0(R
2d), with ‖Sgf‖2 = ‖f‖2 ‖g‖2.

Given a closed subspace V ⊂ L2(Rd), we let PV denote the orthogonal projection onto
V . Then for any f ∈ L2(Rd),

dist(f, V ) = ‖f − PV f‖2 = inf
u∈V

‖f − u‖2.

2.2. Frames

A family of elements {fi}i∈I is a frame for a Hilbert space H if there exist constants
A, B > 0 such that

∀ f ∈ H, A ‖f‖2 ≤
∑

i∈I

|〈f, fi〉|
2 ≤ B ‖f‖2. (1)

The numbers A, B are called frame bounds. The frame operator Sf =
∑

i〈f, fi〉 fi is
a bounded, invertible, and positive mapping of H onto itself. This provides the frame

decomposition

f = S−1Sf =
∑

i∈I

〈f, fi〉 f̃i, ∀ f ∈ H, (2)

where f̃i = S−1fi. The family {f̃i} is also a frame for H , called the dual frame of {fi},
and has frame bounds B−1, A−1. The utility of frames, as compared to sets of functions
that are merely complete in L2(Rd), often lies in the stable reconstruction formula (2).

Riesz bases are special cases of frames, and can be characterized as those frames which
are biorthogonal to their dual frames, i.e., such that 〈fi, f̃j〉 = δij .

An arbitrary family {fi} which satisfies the first inequality in (1) (and which may or
may not satisfy the second inequality) is said to possess a lower frame bound. Likewise, a
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family {fi} which satisfies at least the second inequality in (1) is said to possess an upper
frame bound. Such a family is also called a Bessel sequence.

Additional information on frames can be found in [4, 7].

2.3. Density

We now give several definitions related to the “density” of an arbitrary sequence Γ =
{γi}i∈I of points of Rd. The index set may be countable or uncountable, and since Γ is
regarded as a sequence, repetitions of elements of Γ are allowed.

Definition 2.1. Let Γ = {γi}i∈I ⊂ Rd.

(a) Γ is δ-uniformly separated if δ = inf i6=j |γi − γj | > 0. The number δ is the
separation constant.

(b) Γ is relatively uniformly separated if it is a finite union of uniformly separated
sequences Γk. More precisely, this means that I can be partitioned into disjoint
sets I1, . . . , Ir such that each sequence Γk = {γi}i∈Ik

is δk-uniformly separated
for some δk > 0.

Definition 2.2. Let Γ = {γi}i∈I ⊂ Rd. For each h > 0, let ν+(h) and ν−(h) denote
the largest and smallest numbers of points of Γ that lie in any Qh(x):

ν+(h) = max
x∈Rd

#
(

Γ ∩ Qh(x)
)

and ν−(h) = min
x∈Rd

#
(

Γ ∩ Qh(x)
)

.

We have 0 ≤ ν−(h) ≤ ν+(h) ≤ ∞ for each h. The upper and lower Beurling densities of
Γ are then

D+(Γ) = lim sup
h→∞

ν+(h)

hd
and D−(Γ) = lim inf

h→∞

ν−(h)

hd
.

We have 0 ≤ D−(Γ) ≤ D+(Γ) ≤ ∞. If D+(Γ) = D−(Γ), then Γ is said to have uniform

Beurling density D(Γ) = D+(Γ) = D−(Γ).

Note that if Γ is the disjoint union of Γ1, . . . , Γr, then we always have

#
(

Γ ∩ Qh(x)
)

=

r
∑

k=1

#
(

Γk ∩ Qh(x)
)

,

and therefore
r

∑

k=1

D−(Γk) ≤ D−(Γ) ≤ D+(Γ) ≤
r

∑

k=1

D+(Γk). (3)

Some or all of the inequalities in (3) may be strict. For example, if Γ1 is the set of negative
integers, Γ2 is the positive integers, and Γ = Γ1 ∪ Γ2, then D−(Γ1) = D−(Γ2) = 0,
D−(Γ) = D+(Γ) = 1, and D+(Γ1) = D+(Γ2) = 1.

The following lemma provides some equivalent ways to view the meaning of finite upper
Beurling density.

Lemma 2.3. Let Γ = {γi}i∈I be any sequence of points in Rd. Then the following

statements are equivalent.

(a) D+(Γ) < ∞.
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(b) Γ is relatively uniformly separated.

(c) For some (and therefore every) h > 0, there is an integer Nh > 0 such that each

cube Qh(hn) contains at most Nh points of Γ. That is,

Nh = sup
n∈Zd

#
(

Γ ∩ Qh(hn)
)

< ∞.

Proof. (a) ⇒ (c). If D+(Γ) < ∞ then ν+(h)/hd < ∞ for some h.

(c) ⇒ (b). Assume that there is an h > 0 such that each cube Qh(hn) contains at
most Nh elements of Γ. Let e1, . . . , e2d denote the vertices of the unit cube [0, 1]d, and
define

Zk = (2Z)d + ek and Bk =
⋃

n∈Zk

Qh(hn).

Then Rd is the disjoint union of the 2d sets Bk. Moreover, if m, n ∈ Zk with m 6= n,
then

dist(Qh(hm), Qh(hn)) = inf {|x − y| : x ∈ Qh(hm), y ∈ Qh(hn)} ≥ h.

Further, each cube Qh(hn) contains at most Nh elements of Γ, so the sequences {γi : γi ∈
Bk} can be split into Nh uniformly separated sequences. Hence the entire sequence Γ can
be split into 2dNh uniformly separated sequences.

(b) ⇒ (a). Assume that Γ is relatively uniformly separated. Then we can partition
I into sets I1, . . . , Ir in such a way that each sequence Γk = {γi}i∈Ik

is δk-uniformly
separated. Let δ = min {δ1/2, . . . , δr/2}. Then any cube Qδ(x) contains at most one
element of Γk, and therefore contains at most r elements of Γ. Therefore, if h is any
positive number then Qhδ(x) can contain at most r(h+1)d elements of Γ. Hence ν+(hδ) ≤
r(h + 1)d for each h, so

D+(Γ) ≤ lim sup
h→∞

r(h + 1)d

(hδ)d
=

r

δd
< ∞. �

3. DENSITY OF GABOR FRAMES

We will prove Theorem 1.1 in this section. We consider part (a) and part (b) of the the-
orem separately. In particular, we begin by considering the special case of Theorem 1.1(a)
when r = 1.

Theorem 3.1. Choose a nonzero g ∈ L2(Rd) and a sequence Λ ⊂ R2d. If S(g, Λ)
possesses an upper frame bound, then Λ is relatively uniformly separated.

Proof. Assume that Λ is not relatively uniformly separated. Choose any f ∈ L2(Rd) with
‖f‖2 = 1, and note that

|〈MqTpf, MbTag〉| = |〈f, Mb−qTa−pg〉| = |Sgf(a − p, b− q)|.

Since Sgf is nonzero and continuous on R2d, it must be bounded away from zero on some
cube, say,

µ = inf
(x,y)∈Qh(c,d)

|Sgf(x, y)| > 0.
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Now choose any N > 0. Then, by Lemma 2.3 applied to Λ, there exists some cube
Qh(p, q) which contains at least N elements of Λ. However, if (a, b) ∈ Qh(p, q), then
(a − p + c, b − q + d) ∈ Qh(c, d), so

∑

(a,b)∈Λ∩Qh(p,q)

|〈Mq−dTp−cf, MbTag〉|2

=
∑

(a,b)∈Λ∩Qh(p,q)

|Sgf(a − p + c, b − q + d)|2 ≥ Nµ2.

Since ‖Mq−dTp−cf‖2 = 1, it follows that S(g, Λ) cannot possess an upper frame bound. �

Proof of Theorem 1.1(a). Suppose that
⋃

k S(gk, Λk) possesses an upper frame bound.
Then, by Theorem 3.1, each Λk is relatively uniformly separated. Hence Λ is a finite
union of relatively uniformly separated sequences, therefore is itself relatively uniformly
separated, and hence has finite upper Beurling density. �

We will now give the proof of Theorem 1.1(b). The insight provided by [13] is that
Gabor frames possess a certain Homogeneous Approximation Property, or HAP. This is
stated below in our general context as Theorem 3.4. The proof given by Ramanathan
and Steger relied on weak convergence of translations of Λ. Gröchenig and Razafinjatovo
proved an analogue of the HAP for frames of translates in the space of bandlimited
functions [6]. Their proof was considerably shorter than the method of [13], but required
a restriction on the frame generators. In our context of Gabor systems, this restriction
stems from the fact that the local maximal function of the short-time Fourier transform
Sgf is not necessarily square-integrable. We will provide a simple proof of the HAP which
imposes no restriction on the generators.

Notation 3.2. Let g1, . . . , gr ∈ L2(Rd) and Λ1, . . . , Λr ⊂ R2d be such that
⋃

k S(gk, Λk)
is a frame for L2(Rd), with frame bounds A, B. Let

{g̃k,a,b}(a,b)∈Λk,k=1,...,r

denote the dual frame of
⋃

k S(gk, Λk). In general, this dual frame need not consist of
translates and modulates of some finite set of functions.

Given h > 0 and (p, q) ∈ R2d, let W (h, p, q) denote the following subspace of L2(Rd):

W (h, p, q) = span{g̃k,a,b : (a, b) ∈ Qh(p, q) ∩ Λk, k = 1, . . . , r}. (4)

This space is finite-dimensional because, by Theorem 1.1(a), each Λk is relatively uni-
formly separated.

Lemma 3.3. Set ϕ(x) = e−(π/2)x2

, and let h > 0 be fixed. Then there exists a constant

K such that for each f ∈ L2(Rd) and each (p, q) ∈ R2d,

|〈ϕ, MqTpf〉|
2 ≤ K

∫∫

Qh(p,q)

|〈ϕ, MyTxf〉|2 dx dy.

Proof. The Bargmann transform

Bf(x + iy) = e(π/2)(x2+y2) eπixy〈MyT−xf, ϕ〉
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maps L2(Rd) into the space of entire functions on C2d [5, p. 40]. Hence, by [8, Theorem
2.2.3], there exists a constant C, independent of f , such that

|Bf(0)| ≤ C

∫∫

Qh(0,0)

|Bf(z)| dz. (5)

Applying (5) to the function MqTpf therefore yields

|〈ϕ, MqTpf〉|
2 = |B(MqTpf)(0)|2

≤ C2

(
∫∫

Qh(0,0)

|e
π
2
(x2+y2) 〈MyT−x(MqTpf), ϕ〉| dx dy

)2

≤ C2

(
∫∫

Qh(0,0)

eπ(x2+y2) dx dy

)

×

(
∫∫

Qh(0,0)

|〈Mq+yTp−xf, ϕ〉|2 dx dy

)

= K

∫∫

Qh(p,q)

|〈MyTxf, ϕ〉|2 dx dy. �

We can now state the HAP. Our simple proof follows by observing that the HAP for
time-frequency shifts of a single function implies the HAP for all functions.

Theorem 3.4 (Homogeneous Approximation Property). Let g1, . . . , gr ∈ L2(Rd) and

Λ1, . . . , Λr ⊂ R2d be such that
⋃r

k=1 S(gk, Λk) is a frame for L2(Rd). Then for each

f ∈ L2(Rd),

∀ ε > 0, ∃R > 0, ∀ (p, q) ∈ R2d, dist
(

MqTpf, W (R, p, q)
)

< ε. (6)

Proof. By Theorem 1.1(a), the assumption that
⋃

k S(gk, Λk) is a frame implies that
each Λk is relatively uniformly separated. By dividing each Λk into subsequences that
are uniformly separated, we may assume without loss of generality that each Λk is δk-
uniformly separated. Define δ = min{δ1/2, . . . , δr/2}.

Let H be the subset of L2(R) consisting of all functions f for which (6) holds. It is
easy to see that H is closed under finite linear combinations and L2-limits. It therefore

suffices to show that, for the Gaussian function ϕ(x) = e−(π/2)x2

, all time-frequency shifts
MtTsϕ belong to H, for then H = L2(Rd) and the result follows.

Therefore, fix any (s, t) ∈ R2d, and consider any (p, q) ∈ R2d. The function
MqTp(MtTsϕ) has the frame expansion

MqTp(MtTsϕ) =
r

∑

k=1

∑

(a,b)∈Λk

〈MqTp(MtTsϕ), MbTagk〉 g̃k,a,b.

By definition of distance and the fact that {g̃k,a,b} is itself a frame with upper frame
bound A−1, we have

dist
(

MqTp(MtTsϕ), W (R, p, q)
)2

≤

∥

∥

∥

∥

MqTp(MtTsϕ) −

r
∑

k=1

∑

(a,b)∈QR(p,q)∩Λk

〈MqTp(MtTsϕ), MbTagk〉 g̃k,a,b

∥

∥

∥

∥

2

2
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=

∥

∥

∥

∥

r
∑

k=1

∑

(a,b)∈Λk\QR(p,q)

〈MqTp(MtTsϕ), MbTagk〉 g̃k,a,b

∥

∥

∥

∥

2

2

≤ A−1
r

∑

k=1

∑

(a,b)∈Λk\QR(p,q)

|〈MqTp(MtTsϕ), MbTagk〉|
2. (7)

By Lemma 3.3, there exists a constant K such that

|〈MqTp(MtTsϕ), MbTagk〉|
2 = |〈ϕ, Mb−q−tTa−p−sgk〉|

2

≤ K

∫∫

Qδ(a−p−s,b−q−t)

|〈ϕ, MyTxgk〉|
2 dx dy

= K

∫∫

Qδ(p+s−a,q+t−b)

|Sϕgk(x, y)|2 dx dy, (8)

where Sϕgk is the short-time Fourier transform of gk against ϕ. Combining (7) and (8)
with the fact that Λk is δ-separated, we conclude that

dist
(

MqTp(MtTsϕ), W (R, p, q)
)2

≤ A−1K

r
∑

k=1

∑

(a,b)∈Λk\QR(p,q)

∫∫

Qδ(p+s−a,q+t−b)

|Sϕgk(x, y)|2 dx dy

≤ A−1K

r
∑

k=1

∫∫

R2d\QR−δ(s,t)

|Sϕgk(x, y)|2 dx dy. (9)

Since each Sϕgk ∈ L2(R2d), the last quantity in (9) can be made arbitrarily small,
independently of (p, q), by taking R large enough. �

Corollary 3.5 (Strong HAP). Let g1, . . . , gr ∈ L2(Rd) and Λ1, . . . , Λr ⊂ R2d be such

that
⋃r

k=1 S(gk, Λk) is a frame for L2(Rd). Then for each f ∈ L2(Rd) and each ε > 0,

there exists a constant R > 0 such that

∀ (p, q) ∈ R2d, ∀h > 0, ∀ (x, y) ∈ Qh(p, q), dist
(

MyTxf, W (h + R, p, q)
)

< ε.

Proof. Simply note that if (x, y) ∈ Qh(p, q), then W (R, x, y) ⊂ W (h + R, p, q), and
therefore dist(MyTxf, W (h + R, p, q)) ≤ dist(MyTxf, W (R, x, y)). �

We now use the Homogeneous Approximation Property to prove the following com-
parison between the density of a Gabor frame and the density of a Gabor Riesz basis.
The double-projection idea of [13] is an important ingredient.

Theorem 3.6 (Comparison Theorem). Let g1, . . . , gr ∈ L2(Rd) and Λ1, . . . , Λr ⊂ R2d

be such that
⋃r

k=1 S(gk, Λk) is a frame for L2(Rd). Let φ1, . . . , φs ∈ L2(Rd) and

∆1, . . . , ∆s ⊂ R2d be such that
⋃s

k=1 S(φk, ∆k) is a Riesz basis for L2(Rd). Let Λ
be the disjoint union of Λ1, . . . , Λr and let ∆ be the disjoint union of ∆1, . . . , ∆s. Then

D−(∆) ≤ D−(Λ) and D+(∆) ≤ D+(Λ).

Proof. We use the notation defined in Notation 3.2. Additionally, we denote the dual
frame of

⋃

k S(φk , ∆k) by {φ̃k,a,b}(a,b)∈∆k,k=1,...,s, and, in analogy to the subspaces
W (h, p, q) defined in (4), we set

V (h, p, q) = span{MbTaφk : (a, b) ∈ Qh(p, q) ∩ ∆k, k = 1, . . . , s}.
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By Theorem 1.1(a), each ∆k is relatively uniformly separated, and hence V (h, p, q) is
finite-dimensional. Since the elements of any frame are uniformly bounded in norm, we
can find a constant C such that ‖φ̃k,a,b‖ ≤ C for all k, a, and b.

Choose now any ε > 0. Then, by Corollary 3.5 applied to the frame
⋃

k S(gk, Λk) and
the function f = φk , there exists Rk > 0 such that

∀h > 0, ∀ (p, q) ∈ R2d, ∀ (x, y) ∈ Qh(p, q),

dist
(

MyTxf, W (h + Rk, p, q)
)

<
ε

C
.

(10)

Let R = max{R1, . . . , Rs}. Then (10) holds for each k when Rk is replaced by R.
Now let h > 0 and (p, q) ∈ R2d be fixed. For simplicity, let us denote the orthogonal

projections onto V (h, p, q) and W (h + R, p, q) by PV = PV (h,p,q) and PW = PW (h+R,p,q).
Define T : V (h, p, q) → V (h, p, q) by

T = PV (h,p,q) PW (h+R,p,q) = PV PW .

Then, by the biorthogonality of
⋃

k S(φk, ∆k) and {φ̃k,a,b}, the trace of T can be computed
as

tr(T ) =

s
∑

k=1

∑

(a,b)∈Qh(p,q)∩∆k

〈T (MbTaφk), φ̃k,a,b〉.

However, for (a, b) ∈ Qh(p, q) ∩ ∆k , we have

〈T (MbTaφk), φ̃k,a,b〉 = 〈PW MbTaφk, PV φ̃k,a,b〉

= 〈MbTaφk, PV φ̃k,a,b〉 + 〈(PW − I)MbTaφk , PV φ̃k,a,b〉.

Now, PV MbTaφk = MbTaφk since MbTaφk ∈ V (h, p, q). Therefore,

〈MbTaφk , PV φ̃k,a,b〉 = 〈PV MbTaφk , φ̃k,a,b〉 = 〈MbTaφk, φ̃k,a,b〉 = 1,

the last equality following from biorthogonality. Further, by (10) we have

|〈(PW − I)MbTaφk , PV φ̃k,a,b〉| ≤ ‖(PW − I)MbTaφk‖2 ‖PV φ̃k,a,b‖2 ≤
ε

C
· C = ε.

Hence, since ∆ is the disjoint union of ∆1, . . . , ∆s,

tr(T ) ≥

s
∑

k=1

∑

(a,b)∈Qh(p,q)∩∆k

(1 − ε)

= (1 − ε)

s
∑

k=1

#
(

Qh(p, q) ∩ ∆k

)

= (1 − ε) #
(

Qh(p, q) ∩ ∆
)

. (11)

On the other hand, all eigenvalues of T satisfy |λ| ≤ ‖T‖ ≤ 1. Hence,

tr(T ) ≤ rank(T )

≤ dim
(

W (h + R, p, q)
)



302 CHRISTENSEN, DENG, AND HEIL

≤

s
∑

k=1

#
(

Qh+R(p, q) ∩ Λk

)

= #
(

Qh+R(p, q) ∩ Λ
)

. (12)

Therefore, by combining (11) and (12), we see that for each h > 0 and each (p, q) ∈ R2d,

(1 − ε) #
(

Qh(p, q) ∩ ∆
)

≤ #
(

Qh+R(p, q) ∩ Λ
)

.

As a consequence,

(1 − ε)
#

(

Qh(p, q) ∩ ∆
)

h2d
≤

#
(

Qh+R(p, q) ∩ Λ
)

(h + R)2d

(h + R)2d

h2d
.

It follows that

(1 − ε) D−(∆) ≤ D−(Λ) and (1 − ε) D+(∆) ≤ D+(Λ),

and since ε is arbitrary, the theorem is proved. �

The proof of part (b) of Theorem 1.1 is now immediate.

Proof of Theorem 1.1(b). Define φ = χ
Q1(0) and ∆ = Zd. Then S(φ, ∆) is an orthonormal

basis for L2(Rd). Therefore, Theorem 3.6 implies that D−(Λ) ≥ D−(∆) = 1. �

We remark that we cannot replace the conclusion D−(Λ) ≥ 1 of Theorem 1.1(b) by the
stronger statement that

∑r
k=1 D−(Λk) ≥ 1. For example, consider again the orthonormal

basis S(φ, ∆) defined by φ = χ
Q1(0) and ∆ = Zd. We do have D−(∆) ≥ 1. However, if we

define ∆1 = {n = (n1, . . . , nd) ∈ Zd : n1 ≥ 0} and ∆2 = {n = (n1, . . . , nd) ∈ Zd : n1 < 0},
then S(φ, ∆1)∪S(φ, ∆2) is an orthonormal basis for L2(Rd), yet D−(∆1) = D−(∆2) = 0.

We conclude this section with the following consequence of the Comparison Theorem
for Gabor Riesz bases.

Corollary 3.7. Assume that φ1, . . . , φs ∈ L2(Rd) and ∆1, . . . , ∆s ⊂ R2d are such that
⋃s

k=1 S(φk, ∆k) is a Riesz basis for L2(Rd). Let ∆ be the disjoint union of ∆1, . . . , ∆s.

Then D+(∆) = D−(∆) = 1; i.e., ∆ has uniform Beurling density D(∆) = 1.

Proof. Let g = χ
Q1(0) and Λ = Zd. Then S(g, Λ) is an orthonormal basis, and hence

a frame, for L2(Rd). Therefore, Theorem 3.6 applied to this frame and to the Riesz
basis

⋃

k S(φk, ∆k) implies that D−(∆) ≤ D−(Λ) = 1 and D+(∆) ≤ D+(Λ) = 1. By
symmetry, we also have 1 = D−(Λ) ≤ D−(∆) and 1 = D+(Λ) ≤ D+(∆). �

4. FRAMES OF TRANSLATES

We will prove Theorem 1.2 in this section.
First, however, we observe that Theorem 1.1 already implies that there are no frames

consisting of translates of finitely many functions. To see this, assume that g1, . . . , gr ∈
L2(Rd) and Γ1, . . . , Γr ⊂ Rd were such that

⋃

k T (gk, Γk) was a frame for L2(Rd). Con-
sidering that S(gk, Γk × {0}) = T (gk, Γk), we see that Theorem 1.1(b) implies that
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D−(Γ × {0}) ≥ 1, where Γ is the disjoint union of Γ1, . . . , Γr. However, this is certainly
a contradiction, since D−(Γ × {0}) = 0.

Indeed, Theorem 1.1(b) implies that whenever
⋃

k S(gk, Λk) is a frame, the disjoint
union Λ cannot contain arbitrarily large gaps, since if for each radius h there existed
a point (x, y) ∈ R2d such that Qh(x, y) contained no points of Λ, then we would have
D−(Λ) = 0 and therefore could not have a frame. Thus, the collection Λ of time-frequency
translates must be “spread” throughout the entire time-frequency plane R2d. For exam-
ple, Λ could not be restricted to a banded set like Rd ×Q1(0), or to a single “quadrant”
in R2d.

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. (a) Assume that
⋃

k T (gk, Γk) possessed an upper frame bound.
Then by Theorem 1.1(a), we have D+(Γ×{0}) < ∞. This implies that Γ×{0} is relatively
uniformly separated as a subset of R2d. Hence Γ is relatively uniformly separated as a
subset of Rd, and therefore D+(Γ) < ∞.

(b) We will prove the contrapositive statement. Assume that D+(Γ) < ∞. Then Γ,
and therefore each Γk, is relatively uniformly separated. Hence for each k we can write
Γk as the union of subsequences ∆kj for j = 1, . . . , sk, each of which is δkj -separated.
Define δ = min{δkj/2}. Then fix any h < δ, and define Q = Qh(0). Note that the cubes
{Q + a}a∈∆kj

are disjoint, and define

Bkj =
⋃

a∈∆kj

(Q + a).

Then,
r

∑

k=1

∑

a∈Γk

|〈χQ, Tagk〉|
2 =

r
∑

k=1

sk
∑

j=1

∑

a∈∆kj

|〈χQ, χQTagk〉|
2

≤

r
∑

k=1

sk
∑

j=1

∑

a∈∆kj

‖χQ‖
2
2 ‖χQTagk‖

2
2

= ‖χQ‖2
2

r
∑

k=1

sk
∑

j=1

∫

Bkj

|gk(x)|2 dx.

However, for each fixed k and j, the function χ
Bkj

(x) |gk(x)|2 converges to zero pointwise

a.e. as h → 0, and is dominated by the integrable function |gk(x)|2. It therefore follows
from the Lebesgue Dominated Convergence Theorem that limh→0

∫

Bkj
|gk(x)|2 dx = 0.

Hence
⋃

k T (gk, Γk) cannot possess a lower frame bound. �
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