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The excess of a sequence in a Hilbert space is the greatest number of elements that can
be removed yet leave a set with the same closed span. We study the excess and the dual
concept of the deficit of Bessel sequences and frames. In particular, we characterize those
frames for which there exist infinitely many elements that can be removed from the frame yet
still leave a frame, and we show that all overcomplete Weyl-Heisenberg and wavelet frames
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1. Introduction
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Let H be a separable Hilbert space and I a countable index set. A sequence
F = {fi}i∈I of elements of H is a frame for H if there exist constants A, B > 0 such
that

∀h ∈ H, A ‖h‖2 ≤
∑

i∈I

∣

∣〈h, fi〉
∣

∣

2 ≤ B ‖h‖2. (1)

The numbers A, B are called lower and upper frame bounds, respectively (the largest
A and smallest B for which (1) holds are the optimal frame bounds). Frames were first
introduced by Duffin and Schaeffer [5] in the context of nonharmonic Fourier series, and
today frames play important roles in many applications in mathematics, science, and
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engineering. We refer to the monograph of Daubechies [4] or the research-tutorial [8]
for basic properties of frames.

Each frame F is complete in H, i.e., the finite linear span of F is dense in H.
Moreover, a frame provides basis-like representations of the elements of H. Specifically,
there exist vectors f̃i such that

∀h ∈ H, h =
∑

i∈I

〈h, fi〉 f̃i =
∑

i∈I

〈h, f̃i〉 fi, (2)

with unconditional convergence of these series. In general, however, a frame need not be
a basis, and the representations in (2) need not be unique. Frames which are not bases
are overcomplete, i.e., there exist proper subsets of the frame which are complete [5].
The excess of the frame is the greatest integer n such that n elements can be deleted
from the frame and still leave a complete set, or ∞ if there is no upper bound to the
number of elements that can be removed. In the former case, it can be shown that the
frame is simply a Riesz basis to which finitely many elements have been adjoined [9].
Such frames are called “near Riesz bases” and behave in many respects like Riesz bases.
A frame with infinite excess need not contain a Riesz basis as a subset; an example was
constructed in [3] and is discussed in example 5.1.

In this paper we will study the excess of frames and of more general systems,
and the dual concept of the deficit of a system (the minimum number of elements that
must be adjoined to obtain a complete set). Our motivation was the particular case
of Weyl–Heisenberg or Gabor frames. These are frames for the Hilbert space L2(R) of
the form {e2πimβx g(x − nα)}m,n∈Z, where g ∈ L2(R) and α, β > 0. The Balian–Low
Theorem states that if a Weyl–Heisenberg frame is a Riesz basis for L2(R), then the
window function g must be poorly localized in either time or frequency, specifically,
‖tg(t)‖2 ‖ωĝ(ω)‖2 = ∞ [4]; see also [1] for an “amalgam space” variation. Thus, the
most useful Weyl–Heisenberg frames are overcomplete. It can be shown that if αβ > 1
then any Weyl–Heisenberg system is incomplete, if αβ = 1 then a Weyl–Heisenberg
frame is a Riesz basis, and if αβ < 1 then a Weyl–Heisenberg frame is overcomplete, cf.
[4], [13], [14],

It was shown in [7, proposition 7.1.3] that if g generates an overcomplete Weyl–
Heisenberg frame and is compactly supported with support contained in an interval of
length 1/β, then the frame has infinite excess. The question of whether every overcom-
plete Weyl–Heisenberg frame has infinite excess motivated the research for this paper.
We prove in this paper that this is the case, and in fact we obtain a much stronger result:
in any overcomplete Weyl–Heisenberg frame it is possible to find an infinite subset that
can be deleted yet leave a frame (not merely a complete set), and furthermore we can
specify the frame bounds of the resulting system. Moreover, we obtain this result as
a corollary of more general results on the excesses and deficits of Bessel sequences and
arbitrary frames, and we also obtain as corollaries statements about wavelet frames.

The organization of our paper and a sketch of the main results is as follows. In
section 2, we present basic notation and definitions. In section 3, we show that if F is
any complete sequence in a Banach space which has infinite excess, meaning that for
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any n there exists a finite subset Gn of cardinality n such that F \ Gn is complete, then
there actually exists a countably infinite subset G ⊂ F such that F \ G is complete. We
remark that it is not true that F \ ∪Gn will necessarily be complete, even if the Gn are
nested.

In section 4, we restrict to the case of Bessel sequences in Hilbert spaces, i.e.,
sequences which at least satisfy the upper frame condition. We relate the deficit and
excess of a Bessel sequence to the dimension of the kernels of the analysis operator T
and synthesis operator T ∗ associated with the Bessel sequence. We show that if there
exists a pair of operators Q, L that intertwine with T , i.e., LT = TQ, then the structure
of the point spectrum of these operators induces restrictions on the deficit and excess
of the sequence. In particular, if Q has no point spectrum then the deficit is either 0 or
∞, while if L∗ has no point spectrum and F is a frame, then the excess is either 0 or
∞.

In section 5, we further restrict to the case of frames in Hilbert spaces. It was
proved by Duffin and Schaeffer [5] that if F is a frame for H and f ∈ F is such that
F \ {f} is complete in H, then F \ {f} is a frame for H. We prove that if there exist
infinitely many elements gn ∈ F such that F \ {gn} is complete for each individual n
and if there is a uniform lower frame bound L for each frame F \ {gn}, then for each
ε > 0 there exists an infinite subset Gε of {gn}n∈N such that F \Gε is a frame for H with
lower frame bound L− ε. Moreover, we show that the existence of such elements gn is
necessary as well as sufficient in order that an infinite set may be deleted yet leave a
frame, and we provide an example of a frame with infinite excess where such a collection
of elements gn yielding a uniform lower frame bound for each F\{gn} does not exist. We
further show that the existence of such elements gn can be determined from the values
of the inner products of the frame elements with the standard dual frame elements.

Finally, in section 6 we apply our results to the specific cases of Weyl–Heisenberg
and wavelet systems. We prove that any Weyl–Heisenberg or wavelet system that is
an overcomplete frame for its closed linear span contains an infinite subset that can be
deleted yet still leave a frame for the same space. We extend these results to the case of
Weyl–Heisenberg multisystems whose generating parameters are rationally related, or to
wavelet multisystems whose dilation parameters are logarithmically rationally related.
A sequel paper will examine the case of systems where these rationality assumptions are
not satisfied.

2. Notation

N will denote the set of natural numbers, while I will denote a generic countable
index set. |E| denotes the cardinality of a set E.

Let X be a Banach space and let F = {fi}i∈I be a sequence of elements of X. The
finite linear span of F is denoted by span(F), and span(F) denotes the closure (in the
norm-topology of X) of span(F). We say that F is complete if span(F) = X.
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A sequence F = {fi}i∈I in a separable Hilbert space H is a Bessel sequence if there
exists a constant B > 0 such that

∀h ∈ H,
∑

i∈I

∣

∣〈h, fi〉
∣

∣

2 ≤ B‖h‖2.

Associated to any Bessel sequence are the analysis operator T defined by

T :H → ℓ2(I)

h 7→ {〈h, fi〉
}

i∈I

and the synthesis operator T ∗ defined by

T ∗: ℓ2(I)→ H

c 7→
∑

i∈I

cifi.

These are everywhere-defined, bounded operators, each adjoint to the other. If c ∈ ℓ2(I),
then the series

∑

cifi defining T ∗c converges unconditionally in the norm of H. Since
span(F) ⊂ ranT ∗ ⊂ span(F), we have span(F) = ranT ∗. The elements of a Bessel
sequence are uniformly bounded above in norm, specifically, ‖fi‖2 ≤ B for each i ∈ I.

Frames are special cases of Bessel sequences. The utility of a frame lies in the fact
that there exists a dual frame {f̃i}i∈I such that the frame expansions in (2) hold (this
fails in general for Bessel sequences). The standard dual frame is given by f̃i = S−1fi,
where S = T ∗T is the frame operator. The frame operator is a positive, continuously
invertible mapping of H onto itself, with AI ≤ S ≤ BI. A frame is tight if it is possible
to take A = B in (1), normalized tight if A = B = 1 (but note that some authors
define a normalized frame to be one where ‖fi‖ = 1 for every i ∈ I). Since S is a
positive operator, it has a positive square root S1/2. Moreover, S−1/2 is a bounded,
continuously invertible operator and {S−1/2fi}i∈I is a normalized tight frame for H [7,
corollary 6.3.5]; [2, theorem III.2]. Thus every frame is equivalent to a normalized tight
frame.

A Riesz sequence is a sequence F = {fi}i∈I for which there exist A, B > 0 such
that

∀ c ∈ ℓ2(I), A
∑

i∈I

|ci|2 ≤
∥

∥

∥

∥

∑

i∈I

cifi

∥

∥

∥

∥

2

≤ B
∑

i∈I

|ci|2.

If a Riesz sequence is complete then it is called a Riesz basis for H. All Riesz bases are
frames. If F is a Riesz basis, then for each h ∈ H the frame expansion given in (2) is
unique. A frame is a Schauder basis for H if and only if it is a Riesz basis for H.

Definition 2.1. Let F = {fi}i∈I be a sequence in a separable Banach space X.

(a) The deficit of F is

d(F) = inf
{|G| : G ⊂ X and span(F ∪ G) = X

}

.
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That is, the deficit is the least cardinal d(F) such that there exists a subset G ⊂ X
of cardinality d(F) so that F ∪ G is complete in X.

(b) The excess of F is

e(F) = sup
{|G| : G ⊂ F and span(F \ G) = span(F)

}

. (3)

We will show in lemma 4.1 that the supremum in (3) is achieved, i.e., the excess is
the greatest cardinal e(F) such that there exists a subset G ⊂ F of cardinality e(F) so
that F \ G is complete in span(F).

Note that a frame for a Hilbert spaceH has zero deficit, whereas a Riesz sequence in
H has zero excess. The converses of these statements are not true in general. However,
it is true that if a frame has zero excess, then it is a Riesz basis for H [5].

3. Arbitrary sequences

In this section we will show that if a complete sequence F in a Banach space X
has infinite excess, then there exists a countably infinite subset G such that F \ G is
complete in X. First, however, consider the following trivial example.

Example 3.1. Let {en}n∈N be an orthonormal basis for a Hilbert space H. Then
F = {2−m/2en}m,n∈N is a normalized tight frame with infinite excess. Let F = {fn}n∈N
be any enumeration of F , and set Gn = {f1, . . . , fn}. Then F \ Gn is complete in H for
every n, yet F \ ∪Gn = ∅.

Clearly, in this example there does exist an infinite set G such that F\G is complete.
We show in the following lemma that whenever there exist increasing finite nested subsets
which can be deleted from a sequence F yet leave a complete set, then is in fact possible
to find an infinite subset that can be deleted yet leave a complete set.

Lemma 3.2. Let F = {fi}i∈I be a sequence in a Banach space X, and assume that
there exists a subsequence {gn}n∈N such that F \ {g1, . . . , gn} is complete in X for each
n ∈ N. Then there exists an infinite subsequence G of {gn}n∈N such that F \ G is
complete in X.

Proof. Let E = F \ {gn}n∈N. Let k1 = 1. Since E ∪ {gn}∞n=2 = F \ {g1} is complete,
there exists k2 > k1 such that

dist
(

gk1 , span
(

E ∪ {gn}k2−1
n=2

))

<
1

2
,

where dist(x, Y ) = inf{‖x− y‖ : y ∈ Y } is the distance from a vector x to a subset Y of
X. Since E ∪ {gn}∞n=k2+1 = F \ {g1, . . . , gk2} is complete, there exists k3 > k2 such that
both

dist
(

gk1 , span
(

E ∪ {gn}k3−1
n=k2+1

))

<
1

3
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and

dist
(

gk2 , span
(

E ∪ {gn}k3−1
n=k2+1

))

<
1

3
.

Continuing in this way we find k1 < k2 < · · · such that for each ℓ ∈ N we have

dist
(

gkj , span
(

E ∪ {gn}kℓ+1−1
n=kℓ+1

))

<
1

ℓ+ 1
, j = 1, . . . , ℓ. (4)

Let G = {gkj}∞j=1. We claim that F \G is complete. Since F is complete, it suffices
to show that

∀ j ∈ N, dist
(

gkj , span(F \ G)) = 0. (5)

Since E ∪ {gn}kℓ+1−1
n=kℓ+1 ⊂ F \ G, we have from (4) that for all ℓ ≥ j,

dist
(

gkj , span(F \ G)) ≤ dist
(

gkj , span
(

E ∪ {gn}kℓ+1−1
n=kℓ+1

))

<
1

ℓ+ 1
.

Hence (5) holds and the proof is complete. �

Next, we show that it is possible to remove the hypothesis of nestedness in
lemma 3.2. Consequently, in every sequence with infinite excess there exists an infi-
nite subsequence that can be deleted yet leave a complete set.

If S is a subspace of a Banach space X, then dim(S) denotes the dimension of a
subspace S (either finite or ∞). The codimension of S is codim(S) = dim(T ) where T is
any algebraic complement of S, i.e., any subspace such that S+T = X and S∩T = {0}.
The codimension of S is independent of the choice of subspace T .

Theorem 3.3. Let F = {fi}i∈I be a complete sequence in a Banach space X with
infinite excess. Then there exists an infinite subsequence G of F such that F \ G is
complete in X.

Proof. We claim that there must exist a subsequence {gn}n∈N of F such that F \
{g1, . . . , gn} is complete in X for each n ∈ N. Once this is shown, the result then follows
immediately from lemma 3.2.

If no such subsequence existed, there would exist at least one maximal finite subset
G = {g1, . . . , gn} of F such that F \ G is complete. Since F has infinite excess, there
must also exist a finite subset H = {h1, . . . , hm} of F with m ≥ 2n such that F \H is
complete. Since G is maximal, we cannot have G ⊂ H. Hence G ∩H contains at most
n− 1 elements and H \G contains at least n+ 1 elements.

Let E = F \ (G ∪H). Since E ∪ (G \H) = F \H and E ∪ (H \ G) = F \ G are
both complete, we have that

span(E) + span(G \H) = X (6)

and

span(E) + span(H \G) = X. (7)
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It follows from (6) that

codim
(

span(E)
) ≤ |G \H| ≤ n.

Combining this with (7) implies that span(H \G) contains an algebraic complement of
span(E) of dimension at most n. Since |H \G| ≥ n+ 1, at least one element h ∈ H \G
must lie in the closed span of the union of E and the remaining elements of H \G. But
then E ∪ (

H \ (G∪{h})) = F \ (G∪{h}) is complete, which contradicts the maximality
of G. �

4. Bessel Sequences

In this section we consider the deficits and excesses of Bessel sequences in a Hilbert
space. The following result connects the excess and deficit to the dimension of the
kernels of the analysis and synthesis operators.

Lemma 4.1. Let F = {fi}i∈I be a Bessel sequence in a separable Hilbert space H, and
let T :H → ℓ2(I) be the associated analysis operator.

(a) d(F) = dim(kerT ).

(b) e(F) ≥ dim(kerT ∗).

(c) If F is a frame then e(F) = dim(kerT ∗).

Proof. (a) This follows immediately from the fact that
(

span(F)
)⊥

=
(

ranT ∗
)⊥

=
kerT .

(b) For simplicity of notation, let I = N. Let y1, . . . , ym be linearly independent
sequences in kerT ∗, and write yj = (yj,i)i∈N. Then

T ∗yj =
∞
∑

i=1

yj,ifi = 0, j = 1, . . . ,m, (8)

or, in terms of an infinite matrix equation,







y1,1 y1,2 · · ·
...

... · · ·
ym,1 ym,2 · · ·













f1
f2
...






=







0
...
0






.

The matrix on the left above has row rank m, hence has column rank m by the same
Gaussian elimination argument used for finite matrices. Let F = {k1, . . . , km} denote
the indices of a set of m independent columns. We claim that {fi}i∈N\F is complete in
span(F).
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Suppose that h ∈ span(F) satisfies 〈fi, h〉 = 0 for i ∈ N\F . Then from (8) we have

0 = 〈T ∗yj , h〉 =
∞
∑

i=1

yj,i 〈fi, h〉 =
m
∑

i=1

yj,ki 〈fki , h〉, j = 1, . . . ,m.

That is,






y1,k1 · · · y1,km
...

. . .
...

ym,k1 · · · ym,km













〈fk1 , h〉
...

〈fkm , h〉






=







0
...
0






.

However, the matrix on the left-hand side is invertible, so this implies that 〈fkj , h〉 = 0
for j = 1, . . . ,m. Hence 〈fi, h〉 = 0 for all i ∈ N, so h = 0. Thus {fi}i∈N\F is complete,
so e(F) ≥ m.

(c) If dim(kerT ∗) = ∞, then e(F) = ∞ by part (b). If dim(kerT ∗) < ∞, then the
fact that dim(kerT ∗) = e(F) follows from theorems 2.4 and 3.1 in [9]. �

Example 4.2. If F is a Bessel sequence that is not a frame, then it is possible that
e(F) can strictly exceed dim(kerT ∗). For example, let {en}n∈N be an orthonormal basis
for a Hilbert space H, and set f =

∑∞
n=1 en/n. Then F = {en/n}n∈N ∪ {f} is a Bessel

sequence but is not a frame, and it is easy to see that e(F) = 1 while dim(kerT ∗) = 0.
It is similarly possible to construct Bessel sequences where e(F) is any specified finite
value or infinity yet dim(kerT ∗) = 0. In example 6.7 we exhibit a Weyl–Heisenberg
Bessel sequence which satisfies e(F) = 1 and dim(kerT ∗) = 0.

Next we will show that with some additional structural assumptions on the Bessel
sequence, we can obtain more concrete information on the excess and deficit of the
sequence.

Definition 4.3. Let F be a Bessel sequence in a Hilbert space H with associated analy-
sis operator T :H → ℓ2(I). If there exists a pair (Q,L) of bounded operators Q:H → H
and L: ℓ2(I) → ℓ2(I) such that

LT = TQ, (9)

then we call (Q,L) an intertwining pair of operators for F .

It follows immediately that if (9) holds then:

(a) kerT is Q-invariant,

(b) kerT ∗ is L∗-invariant,

(c) ranT is L-invariant,

(d) ranT ∗ is Q∗-invariant.
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Therefore, in light of lemma 4.1, if an intertwining pair of operators exists, then the
excess and deficit of F are realized as dimensions of invariant subspaces associated with
Q and L∗. Now, if N is an operator on H which has no point spectrum (i.e., there are
no values λ ∈ C such that ker(N − λI) 6= {0}), then all non-trivial invariant subspaces
of N must be infinite-dimensional. Indeed, suppose that E was a finite-dimensional
invariant subspace. Then N |E maps the finite-dimensional space E into itself, hence
must have an eigenvalue λ with eigenvector x ∈ E. But then λ is also an eigenvalue
of N , contradicting the fact that N has no point spectrum. An operator with no point
spectrum is said to have a purely continuous spectrum. Combining these remarks with
lemma 4.1, we obtain the following.

Theorem 4.4. Assume that there exists an intertwining pair of operators (Q,L) for a
Bessel sequence F in a separable Hilbert space H.

(a) If Q∗ has no point spectrum, then either dim(span(F)) = 0 or dim(span(F)) = ∞.

(b) If Q has no point spectrum, then either d(F) = 0 or d(F) = ∞.

(c) If L∗ has no point spectrum and F is a frame, then either e(F) = 0 or e(F) = ∞.

Proof. (a) If Q∗ has no point spectrum, then since span(F) = ranT ∗ is Q∗-invariant,
it must be either {0} or infinite-dimensional.

(b) If Q has no point spectrum, then since kerT is Q-invariant, it must be either
{0} or infinite-dimensional. Hence d(F) = dim(kerT ) is either 0 or ∞.

(c) If L∗ has no point spectrum, then since kerL∗ is L∗-invariant, it must be either
{0} or infinite-dimensional. However, if F is a frame then e(F) = dim(kerT ∗), so e(F)
must be either 0 or ∞. �

5. Frames

In this section we consider the excess of frames in Hilbert spaces.
By theorem 3.3, if F is a frame that has infinite excess, then there exists an infinite

subset G ⊂ F such that F \G is complete. However, the following example shows that it
is possible that there may be no way to choose G so that F \G is a frame. This example
is exactly the example constructed in [3] of a normalized tight frame which contains no
subset that is a Riesz basis.

Example 5.1. Let H be a separable Hilbert space. Index an orthonormal basis for H
as {enj }n∈N, j=1,...,n. Set Hn = span{en1 , . . . , enn}. Define

fn
j = enj − 1

n

n
∑

i=1

eni , j = 1, . . . , n,

fn
n+1 =

1√
n

n
∑

i=1

eni .
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Then Fn = {fn
1 , . . . , f

n
n+1} is a normalized tight frame for Hn [3, lemma 2.5]. Since Hn

is n-dimensional, at most one element can be removed from Fn if the remaining elements
are to span Hn. Moreover fn

n+1 is orthogonal to fn
1 , . . . , f

n
n , so fn

n+1 cannot be removed.
If one of the other elements is removed, say fn

1 , then since

n+1
∑

j=2

∣

∣〈en1 , fn
j 〉

∣

∣

2
=





n
∑

j=2

1

n2



+
1

√
n
2 =

2

n
− 1

n2
,

the lower frame bound for Fn \ {fn
1 } as a frame for Hn is at most 2/n− 1/n2.

Now consider that H ∼=
(
∑∞

n=1Hn
)

ℓ2 with the Hn mutually orthogonal. The
sequence F = {fn

j }n∈N, j=1,...,n+1 is a normalized tight frame for H with infinite excess.
Suppose that G is any infinite subset of F such that F \ G is complete. Then G cannot
contain any elements of the form fn

n+1. Hence G = {fnk
jk

}k∈N with n1 < n2 < · · ·
and jk ≤ nk for every k. But then the lower frame bound for F \ G can be at most
2/nk − 1/n2

k for every k, which implies that F \ G cannot have a positive lower frame
bound and therefore is not a frame.

Note that in this example, if we fix a particular k then the subsequence F \ {fnk
jk

}
formed by deleting the single element fnk

jk
from F is a frame for H. However, there is

no single positive number that can serve as a common lower frame bound for all of the
subframes F \ {fnk

jk
}. Suppose that F was a frame such that there did exist an infinite

subsequence G = {gn}n∈N so that F \G was a frame for H, say with lower frame bound
L. Then for each fixed n, since F \ G ⊂ F \ {gn} ⊂ F , we have that F \ {gn} is a frame
for H with lower frame bound L. Hence the existence of such a sequence {gn}n∈N with
uniform lower frame bound for each F \{gn} is a necessary condition in order to be able
to delete infinitely many elements from a frame and still leave a frame. Our next goal
is to show that this condition is sufficient as well as necessary. Specifically, we will show
that if such gn exist, then there exists an infinite subsequence Gε = {gnk

}k∈N such that
F \ Gε is a frame with lower frame bound L− ε.

First, we will prove the theorem for the special case of normalized tight frames.
While this result will be superseded by theorem 5.4 below, the proof of this special case
is so elegant and enlightening that we choose to include it.

Theorem 5.2. Let F = {fi}i∈I be a normalized tight frame for a Hilbert space H, and
assume that there exists an infinite subsequence G = {gn}n∈N of F such that for each n,
F \ {gn} is complete in H (and hence a frame). If there exists a single constant L > 0
that is a lower frame bound for each frame F \ {gn}, then for every 0 < ε < L there
exists an infinite subsequence Gε of G such that F \Gε is a frame for H with lower frame
bound L− ε.

Proof. Since A = B = 1, the frame operator S for F is simply the identity. That is,

∀ f ∈ H, f = Sf =
∑

i∈I

〈f, fi〉 fi.
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We are given that, for each n ∈ N, F \ {gn} is a frame with lower frame bound L. Let
Sn be the frame operator for F \ {gn}, i.e.,

Snf =
∑

i∈I

〈f, fi〉 fi − 〈f, gn〉 gn = f − 〈f, gn〉 gn.

Since

〈Snf, f〉 = ‖f‖2 −
∣

∣〈f, gn〉
∣

∣

2 ≥ ‖f‖2 − ‖f‖2 ‖gn‖2 =
(

1− ‖gn‖2
) ‖f‖2,

we have that 1 − ‖gn‖2 is a lower frame bound for F \ {gn}, and by considering the
element f = gn we see that it is the optimal lower frame bound for F \ {gn}. Therefore
we must have

∀n ∈ N, L ≤ 1− ‖gn‖2.
Since {gn}n∈N is a subset of the frame F , we have

∑

k |〈gn, gk〉|2 ≤ ‖gn‖2 < ∞.
Therefore,

∀n ∈ N, lim
k→∞

〈gn, gk〉 = 0.

Because of this fact, we can extract a subsequence Gε = {gnk
}k∈N with the property that

∑

j,k∈N, k 6=j

∣

∣〈gnk
, gnj 〉

∣

∣ < ε.

We claim that F \ Gε is a frame for H with lower frame bound L− ε.
Consider the operator

Rf =
∞
∑

k=1

〈f, gnk
〉 gnk

.

This is a bounded operator since Gε is a subset of the frame F . We have

‖Rf‖2 =

〈 ∞
∑

k=1

〈f, gnk
〉 gnk

,
∞
∑

j=1

〈f, gnj 〉 gnj

〉

=
∞
∑

k=1

∣

∣〈f, gnk
〉
∣

∣

2 ‖gnk
‖2 +

∑

j,k∈N, k 6=j

〈f, gnk
〉 〈gnj , f〉 〈gnk

, gnj 〉

≤
(

sup
k∈N

‖gnk
‖2

)

〈Rf, f〉 + ‖f‖2
(

sup
k∈N

‖gnk
‖2

)

(

∑

j,k∈N, k 6=j

∣

∣〈gnk
, gnj 〉

∣

∣

)

≤ (1− L) ‖Rf‖ ‖f‖ + ‖f‖2 (1− L) ε.

From this it follows that ‖R‖ ≤ 1− L+ ε, and consequently

∑

i∈I

∣

∣〈f, fi〉
∣

∣

2 −
∞
∑

k=1

∣

∣〈f, gnk
〉
∣

∣

2
= ‖f‖2 − 〈Rf, f〉 ≥ (L− ε) ‖f‖2,

so F \ Gε is a frame with lower frame bound L− ε. �
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Given a frame F with frame bounds A, B, let S = T ∗T be the frame operator.
Recall then that S−1/2 is a bounded, continuously invertible operator and that S−1/2(F)
is a normalized tight frame for H. This can be used to give a generalization of theo-
rem 5.2 to the case of non-tight frames; however, the best conclusion we can draw via
that approach is that the lower frame bound of F \ Gε is at least L(A/B)− ε, which we
will see is not the best possible estimate. For many applications it is essential to have
sharp knowledge of the frame bounds. Theorem 5.4 below is the optimal result: by an
argument more involved than the proof of theorem 5.2 we will show that it is possible
to construct Gε so that F \ Gε has lower frame bound L− ε.

To attempt to motivate the proof of theorem 5.4, suppose that there existed a
subsequence {hk}k∈N of F which had the following properties:

(a) for each k ∈ N, F \ {hk} is a frame for H with lower frame bound L,

(b) {hk}k∈N is an orthogonal sequence,

(c) each hk is an eigenvector of S1/2.

Note that it follows from a–c that

(d) span{hk}⊥ is invariant under S1/2.

We will show that it easily follows from these assumptions that F \ {hk}k∈N is a
frame with lower frame bound L. Of course, these hypotheses are unlikely to be fulfilled
in practice, and much of the actual proof of theorem 5.4 consists of trying to approximate
them.

Note first that
∥

∥S1/2f
∥

∥

2
= 〈Sf, f〉 =

∑

i∈I

∣

∣〈f, fi〉
∣

∣

2
.

Since F is a frame, we therefore have that

∀ f ∈ H, A ‖f‖2 ≤
∥

∥S1/2f
∥

∥

2 ≤ B ‖f‖2. (10)

Without loss of generality, let us assume that the values of A, B in (10) are the optimal
frame bounds. Assume now that hypotheses (a)–(d) above are satisfied. In particular,
assumption (a) says that

∀ k ∈ N, ∀ f ∈ H,
∥

∥S1/2f
∥

∥

2 −
∣

∣〈f, hk〉
∣

∣

2 ≥ L ‖f‖2.
Note that since F \ {hk} is a subset of the frame F and A is the optimal lower frame
bound for F , we have L ≤ A.

Fix now f ∈ H, and write f = f c +
∑

k ckhk with f c ∈ span{hk}⊥. Then
S1/2f = S1/2f c +

∑

k S
1/2(ckhk), and by the orthogonality and invariance assumptions,

this implies that

‖f‖2 =
∥

∥f c
∥

∥

2
+

∞
∑

k=1

‖ckhk‖2 and
∥

∥S1/2f
∥

∥

2
=

∥

∥S1/2f c
∥

∥

2
+

∞
∑

k=1

∥

∥S1/2(ckhk)
∥

∥

2
.



R. Balan et al. / Deficits and excesses of frames 105

Then

∥

∥S1/2f
∥

∥

2 −
∞
∑

k=1

∣

∣〈f, hk〉
∣

∣

2
=

∥

∥S1/2f c
∥

∥

2
+

∞
∑

k=1

(

∥

∥S1/2(ckhk)
∥

∥

2 −
∣

∣〈f, hk〉
∣

∣

2
)

=
∥

∥S1/2f c
∥

∥

2
+

∞
∑

k=1

(

∥

∥S1/2(ckhk)
∥

∥

2 −
∣

∣〈ckhk, hk〉
∣

∣

2
)

≥ A
∥

∥f c
∥

∥

2
+

∞
∑

k=1

L ‖ckhk‖2

= A
∥

∥f c
∥

∥

2
+ L

(‖f‖2 −
∥

∥f c
∥

∥

2) ≥ L ‖f‖2,

the last inequality following from the fact that L ≤ A.
To approximate assumptions (a)–(d) in the actual proof of theorem 5.4, we apply

the Spectral Theorem to the positive operator S1/2. This provides us with a set of
mutually orthogonal subspaces on each of which S1/2 acts approximately as a scalar.
Further, the fact that {gn}n∈N is a Bessel sequence allows us to select a subsequence
{gnk

}k∈N that is “approximately orthogonal,” and by orthogonalizing we can obtain a
sequence of elements {hk}k∈N that are both orthogonal and near to gnk

, although they
are no longer elements of the original frame. These approximations allow us to carry
through the complete proof.

We will require the following elementary lemma.

Lemma 5.3. If {gk}k∈N is a Bessel sequence with upper bound B and if

∞
∑

k=1

‖hk − gk‖2 ≤ β,

then

∀ f ∈ H,
∞
∑

k=1

∣

∣〈f, gk〉
∣

∣

2 ≤
∞
∑

k=1

∣

∣〈f, hk〉
∣

∣

2
+ γ ‖f‖2,

where γ = β + 2B1/2β1/2.

Proof. Let s = {〈f, gk〉}k∈N and t = {〈f, hk〉}k∈N. Then

‖s‖2ℓ2 − ‖t‖2ℓ2 =
(‖s‖ℓ2 − ‖t‖ℓ2

) (‖s‖ℓ2 + ‖t− s+ s‖ℓ2
)

≤ ‖s− t‖ℓ2
(‖t− s‖ℓ2 + 2‖s‖ℓ2

)

≤ β1/2 ‖f‖ (β1/2 ‖f‖+ 2B1/2 ‖f‖) = γ ‖f‖2. �

Theorem 5.4. Let F = {fi}i∈I be a frame for a Hilbert space H, and assume that
there exists an infinite subsequence G = {gn}n∈N of F such that for each n, F \ {gn} is
complete in H (and hence a frame). If there exists a single constant L > 0 that is a lower
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frame bound for each frame F \ {gn}, then for every 0 < ε < L there exists an infinite
subsequence Gε of G such that F \ Gε is a frame for H with lower frame bound L− ε.

Proof. Let A, B denote the optimal frame bounds for F . Then since F \ {gn} is a
subset of the frame F , we have L ≤ A.

Let ε > 0 be fixed. Our goal is to find a subsequence Gε = {gnk
}k∈N of G such that

F \ Gε is a frame with lower frame bound L − ε. Since F \ Gε ⊂ F , the upper frame
bound is automatic, so what we have to show is that

∀ f ∈ H,
∥

∥S1/2f
∥

∥

2 −
∞
∑

k=1

∣

∣〈f, gnk
〉
∣

∣

2 ≥ (L− ε) ‖f‖2, (11)

where S = T ∗T is the frame operator for F .

Step 1. Consider the spectral decomposition of S1/2, i.e.,

S1/2 =

∫ B1/2

A1/2
λ dPλ,

where the Pλ are the spectral projections onto [0, λ]. Fix a constant α > 0 whose exact
value will be specified later, and define

δ =
B1/2 −A1/2

N
,

where N is chosen large enough that

δ
(

2B1/2 − δ
)

< α.

Note that if the frame F is tight, then A = B and so δ = 0. In this case, we will set
N = 1. Note that for a tight frame, the frame operator S is simply S = AI.

For the case of a tight frame, where δ = 0, define

Q1 = I.

Otherwise, for j = 1, . . . , N , define

Qj = PA1/2+jδ − PA1/2+(j−1)δ.

Then the following facts hold.

(a) Each Qj is an orthogonal projection.

(b) The ranges Qj(H) for j = 1, . . . , N are mutually orthogonal.

(c)
∑N

j=1Qj = I.

(d) The operator S1/2 acts approximately as a scalar on Qj(H), specifically,

N
∑

j=1

(

A1/2 + (j − 1)δ
)2 ‖Qjf‖2 ≤

∥

∥S1/2f
∥

∥

2 ≤
N
∑

j=1

(

A1/2 + jδ
)2 ‖Qjf‖2. (12)
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The difference between the right- and left-hand sides of (12) can be bounded as
follows:

N
∑

j=1

(

2δA1/2 + (2j − 1)δ2
) ‖Qjf‖2 ≤ (

2δA1/2 + (2N − 1)δ2
)

N
∑

j=1

‖Qjf‖2

= δ(2B1/2 − δ) ‖f‖2 < α ‖f‖2.

Consequently, the right-hand side of (12) is no more than α‖f‖2 of the left-hand side,
i.e.,

N
∑

j=1

(

A1/2+(j−1)δ
)2 ‖Qjf‖2 ≤

∥

∥S1/2f
∥

∥

2 ≤
N
∑

j=1

(

A1/2+(j−1)δ
)2 ‖Qjf‖2+α ‖f‖2. (13)

Step 2. We now iteratively construct the subsequence Gε = {gnk
}k∈N. For n ∈ N

and j = 1, . . . , N , define

gjn = Qjgn.

Note that gn =
∑n

j=1 g
j
n, with {gjn}j=1,...,N an orthogonal sequence.

Define n1 = 1. For j = 1, . . . , N , set

F j
1 =

{

gjn1

}

and Hj
1 = span

(F j
1

)

.

Let P j
1 be the orthogonal projection of H onto Hj

1 . Let T j
1 :H

j
1 → C be the analysis

operator for F j
1 as a frame for Hj

1 . Since T
j
1 is injective and bounded, it has a continuous

inverse (T j
1 )

−1:C → Hj
1 . Set

ε1 =
β

2

N
∑

j=1

1

‖(T j
1 )

−1‖2
,

where β > 0 is another constant whose exact value will be specified later. Since G is a
Bessel sequence, we know that for each j = 1, . . . , N ,

lim
n→∞

〈

gn, g
j
n1

〉

= 0.

Choose n2 large enough that

N
∑

j=1

∥

∥T j
1 (P

j
1 g

j
n2
)
∥

∥

2
=

N
∑

j=1

1
∑

k=1

∣

∣〈gn2
, gjnk

〉
∣

∣

2
< ε1.

Now continue the process. Set

F j
2 =

{

gjn1
, gjn2

}

and Hj
2 = span

(F j
2

)

.
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Let P j
2 be the orthogonal projection onto Hj

2 . The analysis operator T j
2 :H

j
2 → C

2 is
continuous and injective. Set

ε2 =
β

22

N
∑

j=1

1

‖(T j
2 )

−1‖2
.

Then choose n3 large enough that

N
∑

j=1

∥

∥T j
2 (P

j
2 g

j
n3
)
∥

∥

2
=

N
∑

j=1

2
∑

k=1

∣

∣〈gn3
, gjnk

〉
∣

∣

2
< ε2,

and so forth, to obtain the sequence Gε = {gnk
}k∈N.

Step 3. Next we orthogonalize the vectors gjnk
. Define

hjk = gjnk
− P j

k−1g
j
nk
,

where P j
0 = 0. Since gjn = Qjgn, we have that

hjk ∈ Qj(H).

Further, the subspacesQj(H) are mutually orthogonal, so we conclude that {hjk}k∈N, j=1,...,N

is an orthogonal sequence.

Step 4. Define

hk =
N
∑

j=1

hjk = gnk
−

N
∑

j=1

P j
k−1g

j
nk
.

We observe that hk is close to gnk
, specifically,

∞
∑

k=1

‖hk − gnk
‖2 ≤

∞
∑

k=2





N
∑

j=1

‖P j
k−1g

j
nk
‖




2

≤
∞
∑

k=2





N
∑

j=1

∥

∥(T j
k−1)

−1
∥

∥

∥

∥T j
k−1(P

j
k−1g

j
nk
)
∥

∥





2

≤
∞
∑

k=2





N
∑

j=1

∥

∥(T j
k−1)

−1
∥

∥

2









N
∑

j=1

∥

∥T j
k−1(P

j
k−1g

j
nk
)
∥

∥

2





≤
∞
∑

k=2

β

2k−1
= β. (14)

Step 5. Fix f ∈ H. Recall that {hjk}k∈N, j=1,...,N is an orthogonal sequence and
write

f = f c +
∞
∑

k=1

N
∑

j=1

cjkh
j
k = f c +

∞
∑

k=1

pk,
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where cjk‖h
j
k‖2 = 〈f, hjk〉, so that f c ∈ span{hk}⊥. The functions pk are mutually

orthogonal and are orthogonal to f c, so

‖f‖2 =
∥

∥f c
∥

∥

2
+

∞
∑

k=1

‖pk‖2. (15)

Recall that hk =
∑N

j=1 h
j
k. Therefore

〈f, hk〉 =
N
∑

j=1

〈

f, hjk
〉

=
N
∑

j=1

cjk
〈

hjk, h
j
k

〉

=
N
∑

j=1

cjk
〈

hjk, hk
〉

= 〈pk, hk〉.

Now, since the Qj are orthogonal projections with orthogonal ranges and since

hjk ∈ Qj(H), we have that

Qjf = Qjf
c +

∞
∑

k=1

Qjpk

is an orthogonal decomposition. In fact, Qjpk = cjkh
j
k, and, more importantly,

‖Qjf‖2 =
∥

∥Qjf
c
∥

∥

2
+

∞
∑

k=1

‖Qjpk‖2. (16)

Recall that our goal is to show that (11) is satisfied. Using (13), (16), (15), and
(10), we have that

∥

∥S1/2f
∥

∥

2 ≥
N
∑

j=1

(

A1/2 + (j − 1)δ
)2 ‖Qjf‖2

=
N
∑

j=1

(

A1/2 + (j − 1)δ
)2 ∥

∥Qjf
c
∥

∥

2
+

∞
∑

k=1

N
∑

j=1

(

A1/2 + (j − 1)δ
)2 ‖Qjpk‖2

≥
(

∥

∥S1/2f c
∥

∥

2 − α
∥

∥f c
∥

∥

2
)

+
∞
∑

k=1

(

∥

∥S1/2pk
∥

∥

2 − α ‖pk‖2
)

=
∥

∥S1/2f c
∥

∥

2 − α
∥

∥f c
∥

∥

2
+

∞
∑

k=1

∥

∥S1/2pk
∥

∥

2 − α
(‖f‖2 −

∥

∥f c
∥

∥

2)

≥ A
∥

∥f c
∥

∥

2
+

∞
∑

k=1

∥

∥S1/2pk
∥

∥

2 − α ‖f‖2. (17)

Further, by (14) and lemma 5.3, we have

∞
∑

k=1

∣

∣〈f, gnk
〉
∣

∣

2 ≤
∞
∑

k=1

∣

∣〈f, hk〉
∣

∣

2
+ γ ‖f‖2 =

∞
∑

k=1

∣

∣〈pk, hk〉
∣

∣

2
+ γ ‖f‖2, (18)
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where γ = β + 2B1/2β1/2. Hence, combining (17) and (18),

∥

∥S1/2f
∥

∥

2−
∞
∑

k=1

∣

∣〈f, gnk
〉
∣

∣

2 ≥
∞
∑

k=1

(

∥

∥S1/2pk
∥

∥

2−
∣

∣〈pk, hk〉
∣

∣

2
)

+ A
∥

∥f c
∥

∥

2−(α+γ) ‖f‖2. (19)

Now, by hypothesis, for each k we know that F \{gnk
} is a frame with lower frame

bound L. That is,

∀ k ∈ N, ∀h ∈ H,
∥

∥S1/2h
∥

∥

2 −
∣

∣〈h, gnk
〉
∣

∣

2 ≥ L ‖h‖2.

Since ‖hk − gnk
‖2 ≤ β and since ‖gnk

‖2 ≤ B, the same type of argument as in the
proof of lemma 5.3 yields the estimate

∣

∣〈h, hk〉
∣

∣

2 −
∣

∣〈h, gnk
〉
∣

∣

2 ≤ γ ‖h‖2.

In particular, applying this to the function h = pk and combining it with (19), we
conclude that

∥

∥S1/2f
∥

∥

2 −
∞
∑

k=1

∣

∣〈f, gnk
〉
∣

∣

2 ≥
∞
∑

k=1

(

∥

∥S1/2pk
∥

∥

2 −
∣

∣〈pk, gnk
〉
∣

∣

2 − γ ‖pk‖2
)

+A
∥

∥f c
∥

∥

2 − (α+ γ) ‖f‖2

≥
∞
∑

k=1

(L− γ) ‖pk‖2 +A
∥

∥f c
∥

∥

2 − (α+ γ) ‖f‖2

= (L− γ)
(‖f‖2 −

∥

∥f c
∥

∥

2)
+A ‖f c‖2 − (α+ γ) ‖f‖2

= (L− α− 2γ) ‖f‖2 + (A− L+ γ)
∥

∥f c
∥

∥

2

≥ (L− α− 2γ) ‖f‖2,

the last inequality following from the fact that L ≤ A.
Finally, by choosing the constants α and β small enough, we can obtain α+2γ < ε,

which completes the proof. �

The next proposition shows that the excess can be realized in terms of certain
inner products. We will use this to obtain a condition in corollary 5.7 below that is both
necessary and sufficient for the hypotheses of theorem 5.4 to hold.

Recall that the standard dual of a frame F = {fi}i∈I is the frame F̃ = {f̃i}i∈I
where f̃i = S−1fi. Therefore 〈fi, f̃i〉 = ‖S−1/2fi‖2 ≥ 0. Moreover, S−1/2(F) is a
normalized tight frame, each element of which can have norm at most 1, so 〈fi, f̃i〉 =
‖S−1/2fi‖2 ≤ 1.
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Proposition 5.5. Let F = {fi}i∈I be a frame in a Hilbert space H with standard dual
F̃ = {f̃i}i∈I . Then the excess of F is

e(F) =
∑

i∈I

(

1− 〈fi, f̃i〉
)

.

Proof. By lemma 4.1, we have e(F) = dim(kerT ∗). The orthogonal projection of H
onto kerT ∗ is given by P = I − TS−1T ∗. Letting {δi}i∈I denote the standard basis for
ℓ2(I), we therefore have

e(F) = dim(kerT ∗) = trace(P ) =
∑

i∈I

〈δi, P δi〉 =
∑

i∈I

(

1− 〈fi, f̃i〉
)

. �

We will require the following lemma [7, lemma 6.3.2] in order to obtain an equivalent
form of the hypotheses of theorem 5.4.

Lemma 5.6. Let F be a frame for a Hilbert space H with frame bounds A, B. If
U :H → H is continuously invertible, then U(F) is a frame for H with frame bounds
A‖U−1‖−2, B‖U‖2.

Corollary 5.7. Let F = {fi}i∈I be a frame in a Hilbert space H with standard dual
F̃ = {f̃i}i∈I . Let G = {gn}n∈N be a subsequence of F . Then the following two statements
are equivalent.

(a) There exists a constant L > 0 such that for each n ∈ N, F \ {gn} is a frame for H
with lower frame bound L.

(b) supn∈N 〈gn, g̃n〉 < 1.

Proof. (a) ⇒ (b). Assume that statement (a) holds. Since S−1/2 is a continuously
invertible operator with ‖S1/2‖2 ≤ B, it follows from applying lemma 5.6 to the frame
F \ {gn} that S−1/2(F \ {gn}) is a frame with lower frame bound L/B. However,
since S−1/2(F) is a normalized tight frame, we can also compute the frame bound of
S−1/2(F \ {gn}) as follows:

∑

i∈I

∣

∣〈f, S−1/2fi〉
∣

∣

2 −
∣

∣〈f, S−1/2gn〉
∣

∣

2 ≥ ‖f‖2 −
∥

∥S−1/2gn
∥

∥

2 ‖f‖2

=
(

1−
∥

∥S−1/2gn
∥

∥

2) ‖f‖2. (20)

Thus 1 − ‖S−1/2gn‖2 is a lower frame bound for S−1/2(F \ {gn}), and by considering
the element f = S−1/2gn we see that it is the optimal lower frame bound. Therefore we
must have L/B ≤ 1− ‖S−1/2gn‖2, so

〈gn, g̃n〉 =
∥

∥S−1/2gn
∥

∥

2 ≤ 1− L

B
.

(b) ⇒ (a). Assume that D = supn 〈gn, g̃n〉 < 1. Fix any particular n. Then
1 − ‖S1/2gn‖2 ≥ 1 − D > 0. As in (20), we therefore have that S−1/2(F \ {gn}) is
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a frame for H with lower frame bound 1 − D. Since S1/2 is a continuously invertible
operator with ‖S−1/2‖2 ≤ 1/A, it follows from lemma 5.6 that F \ {gn} is a frame for
H with lower frame bound L = A(1−D). �

6. Weyl-Heisenberg and wavelet systems

In this section, we apply our previous results to the specific case of Weyl–Heisenberg
and wavelet frames. For simplicity, we will consider only the one-dimensional setting,
but the results given here can be easily extended to higher dimensions.

Definition 6.1. Given a nonzero function g ∈ L2(R), called a window function, and
given α, β > 0, the Weyl-Heisenberg or Gabor system determined by g, α, β is

(g;α, β)WH = {gm,n;α,β}m,n∈Z,

where

gm,n;α,β(x) = e2πimβxg(x− nα).

A Weyl–Heisenberg multisystem is a union of such Weyl–Heisenberg systems, namely,

(g1, . . . , gr;α1, . . . , αr;β1, . . . , βr)WH = (g1;α1, β1)WH ∪ · · · ∪ (gr;αr, βr)WH.

Definition 6.2. Given a nonzero function Ψ ∈ L2(R), called a wavelet, and given a > 1
and b > 0, the wavelet system generated by Ψ, a, b is

(Ψ; a, b)Wa = {Ψm,n;a,b}m,n∈Z,

where

Ψm,n;a,b(x) = am/2Ψ(amx− nb).

A wavelet multisystem has the form

(Ψ1, . . . ,Ψr; a1, . . . , ar; b1, . . . , br)Wa = (Ψ1; a1, b1)Wa ∪ · · · ∪ (Ψr; ar, br)Wa.

For α, β ∈ R and a > 0, define the following operators:

Tα:L
2(R) → L2(R), Tαf(x) = f(x− α),

Vα: ℓ
2(Z2) → ℓ2(Z2), Vαc =

{

e−2πiαmcm,n−1
}

m,n∈Z,

Mβ:L
2(R) → L2(R), Mβf(x) = e2πiβxf(x),

U : ℓ2(Z2) → ℓ2(Z2), Uc = {cm−1,n}m,n∈Z,

Da:L
2(R) → L2(R), Daf(x) = a1/2f(ax).

In particular, note that

gm,n;α,β = MmβTnαg and Ψm,n;a,b = DamTnbΨ.
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The next lemma follows from elementary calculations.

Lemma 6.3. (a) Tα, Vα, Mβ , U , and Da have no point spectrum if α, β 6= 0 and a 6= 1.

(b) If (g;α, β)WH is a Bessel sequence then (Tα, Vαβ) and (Mβ , U) are each intertwining
pairs of operators for (g;α, β)WH.

(c) If (Ψ; a, b)Wa is a Bessel sequence then (Da, U) is an intertwining pair of operators
for (Ψ; a, b)Wa.

Consequently, conclusions about the deficit and excess of Weyl–Heisenberg and
wavelet systems follow immediately from theorem 4.4.

Corollary 6.4. Let g ∈ L2(Rd) and α, β > 0 be such that (g;α, β)WH is a Bessel
sequence in L2(Rd). Then the following statements hold.

(a) span(g;α, β)WH is either {0} or is an infinite-dimensional subspace of L2(Rd).

(b) The deficit of (g;α, β)WH is either zero or infinite.

(c) If (g;α, β)WH is a frame for its closed linear span, then its excess is either zero or
infinite.

Corollary 6.5. Let Ψ ∈ L2(Rd) and a > 1, b > 0 be such that (Ψ;α, β)Wa is a Bessel
sequence in L2(Rd). Then the following statements hold.

(a) span(Ψ;α, β)Wa is either {0} or is an infinite-dimensional subspace of L2(Rd).

(b) The deficit of (Ψ;α, β)Wa is either zero or infinite.

(c) If (Ψ;α, β)Wa is a frame for its closed linear span, then its excess is either zero or
infinite.

Next, by making use of the results from section 5, we will extend the conclusions
in corollaries 6.4(c) and 6.5(c) to say that infinitely many elements can be deleted from
any overcomplete Weyl–Heisenberg or wavelet system yet leave a frame. Additionally,
we will extend these results to the case of Weyl–Heisenberg or wavelet multisystems
that satisfy a certain rationality condition among the generating parameters of the
system. Let us say that r-tuple of numbers (a1, . . . , ar) are rationally related if there are
r integers k1, . . . , kr such that k1a1 = · · · = krar. Then we have the following result for
Weyl–Heisenberg multisystems.

Theorem 6.6. Let F = (g1, . . . , gr;α1, . . . , αr;β1, . . . , βr)WH be a Weyl–Heisenberg
multisystem that is an overcomplete frame for its closed linear span H in L2(R). If
either (α1, . . . , αr) or (β1, . . . , βr) are rationally related, then there exists an infinite
subset G of F such that F \ G is a frame for H.
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Proof. Suppose that (β1, . . . , βr) are rationally related, say β = k1β1 = · · · = krβr.
Since F is overcomplete, there is some element, say gim0,n0;αi,βi

such that F\{gim0,n0;αi,βi
}

is a frame for H. Note that for each m, n, p ∈ Z and j = 1, . . . , r, we have

Mβpg
j
m,n;αj ,βj

= MkjβjpMmβjTnαjg
j = M(m+kjp)βj

Tnαjg
j = gj(m+kjp),n;αj ,βj

.

Hence for each j, we have that Mβp simply permutes the elements of (gj ;αj , βj)WH.
Moreover,

Mβp

(F \ {gim0,n0;αi,βi
}) = F \ {

gi(m0+kjp),n0;αi,βi

}

, p ∈ Z. (21)

Since Mβp is a unitary operator mapping H onto itself, each of the subsequences in (21)
is a frame for H, all with the same frame bounds. Consequently, the result follows from
theorem 5.4. If instead (α1, . . . , αr) are rationally related, then a similar proof can be
given using Tαp instead of Mβp. �

The following example shows that the frame hypothesis in theorem 6.6 cannot be
relaxed, i.e., there exist Weyl–Heisenberg systems that are Bessel sequences yet have
positive but finite excess.

Example 6.7. Consider the Weyl–Heisenberg system F = (g; 1, 1)WH in L2(R) gener-

ated by the Gaussian function g(x) = e−x2

with α = β = 1. It is well-known that this
Weyl–Heisenberg system is not a frame, e.g., see [8, example 4.3.5]. LetQ = [0, 1)×[0, 1).
The Zak transform is the isometric isomorphism Z:L2(R) → L2(Q) defined by

Zf(x, ω) =
∑

k∈Z

e2πikωf(x+ k).

We refer to [4] or [8] for details on the Zak transform. It can be shown that Zg is a
continuous and bounded function on Q and has a single zero in Q. This shows that
(g; 1, 1)WH is a Bessel sequence but is not a frame for L2(R).

The synthesis operator for (g; 1, 1)WH is the mapping T ∗: ℓ2(Z2) → L2(R) defined
by

T ∗c =
∑

m,n

cm,ngm,n;1,1 for c = {cm,n}m,n∈Z ∈ ℓ2
(

Z
2).

Suppose that T ∗c = 0 for some c ∈ ℓ2(Z2). Then, using basic properties of the Zak
transform,

0 = ZT ∗c =
∑

m,n

cm,nZgm,n =
∑

m,n

cm,nem,nZg,

where em,n(x, ω) = e2πimxe2πinω. Since c ∈ ℓ2(Z2) and {em,n}m,n∈Z is an orthonormal
basis for L2(Q), we have that H =

∑

m,n cm,nem,n is a well-defined function in L2(Q).
Therefore, since Zg is bounded we have that 0 = ZT ∗c = H · Zg. However, Zg is
nonzero a.e., so this implies that H = 0 a.e., and therefore c = 0. Thus kerT ∗ = {0}.



R. Balan et al. / Deficits and excesses of frames 115

A similar argument, using the fact that 1/Zg /∈ L2(Q), shows that e(F) = 1. This
was first proved in [12]. Thus (g; 1, 1)WH provides an example of a Weyl–Heisenberg
system that is a Bessel sequence but not a frame and such that dim(kerT ∗) < e(F).
This shows that even for Weyl–Heisenberg systems, the inequality in lemma 4.1(b) can
be strict (see also example 4.2).

The excess in this example is exactly 1. In particular, (g; 1, 1)WH\{g} =
{gm,n}(m,n) 6=(0,0) is complete, but no proper subset of (g; 1, 1)WH\{g} is complete. How-

ever, (g; 1, 1)WH\{g} is not a Schauder basis for L2(R) [6, p. 168]. In fact, while g
can be approximated arbitrarily closely by finite linear combinations of elements of
(g; 1, 1)WH\{g}, no series of the form

∑

(m,n) 6=(0,0) cm,ngm,n can converge to g, even in a
weak sense, cf. [10] and [11, theorem 1]. We refer to [11] for a detailed study of conver-
gence questions involving Weyl–Heisenberg systems at the critical density α = β = 1.

A technique similar to the one used in theorem 6.6 can be applied to the wavelet
case. We say that (a1, . . . , ar) are logarithmically rationally related if there are r integers

k1, . . . , kr such that ak11 = · · · = akrr .

Theorem 6.8. Let F = (Ψ1, . . . ,Ψr; a1, . . . , ar; b1, . . . , br)Wa be a wavelet multisystem
that is an overcomplete frame for its closed linear span H in L2(R). If (a1, . . . , ar) are
logarithmically rationally related, then there exists an infinite subset G of F such that
F \ G is a frame for H.

Proof. The proof is similar to the proof of theorem 6.6, using the fact that if a = ak11 =
· · · = akrr and p ∈ Z, then Dap is a unitary operator such that

DapΨ
j
m,n;aj ,bj

= D
a
kjp

j

Damj
TnbjΨ

j = D
a
m+kjp

j

TnbjΨ
j = Ψj

(m+kjp),n;aj ,bj
. �
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