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Abstract

A Gabor system for L2(Rd) has the form G(g,Λ) = {e2πib·xg(x − a)}(a,b)∈Λ, where

g ∈ L2(Rd) and Λ is a sequence of points in R
2d. We prove that, with only a mild

restriction on the generator g and for nearly arbitrary sets of time-frequency shifts
Λ, an overcomplete Gabor frame has infinite excess, and in fact there exists an
infinite subset that can be removed yet leave a frame. The proof of this result yields
an interesting connection between the density of Λ and the excess of the frame.
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1 Introduction

A countable sequence F = {fi}i∈I of elements of a Hilbert space H is a frame
for H if there exist constants A, B > 0 (called frame bounds) such that

∀h ∈ H, A ‖h‖2 ≤
∑

i∈I

|〈h, fi〉|
2 ≤ B ‖h‖2. (1)
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The frame is tight if we can take A = B. It is a normalized tight frame or a
Parseval frame if we can take A = B = 1.

Frames were first introduced by Duffin and Schaeffer (8) in the context of non-
harmonic Fourier series, and have since seen a wide variety of applications in
science, mathematics, and engineering. The frame operator Sh =

∑

i∈I〈h, fi〉 fi
is a positive, continuous mapping of H onto itself with continuous inverse. The
frame F together with its standard dual frame F̃ = {f̃i}i∈I = {S−1fi}i∈I pro-
vides the frame expansions

h =
∑

i∈I

〈h, f̃i〉 fi =
∑

i∈I

〈h, fi〉 f̃i. (2)

However, these representations need not be unique, i.e., F need not be a basis.
In fact, F is a basis if and only if it is a Riesz basis. We say that a frame that
is not a basis is overcomplete or redundant. For each j ∈ I, F \ {fj} = {fi}i 6=j

is either incomplete or is itself a frame. The excess of F , denoted e(F), is
the supremum of the cardinalities of all subsets J ⊂ I such that {fi}i∈I\J is
complete in H.

The prior paper (1) studied the excess of frames. Among other results, it
was shown that the supremum in the definition of excess is achieved, so in
particular if e(F) = ∞ then there is an infinite subset J ⊂ I such that {fi}i∈I\J
is complete. However, it need not be true that {fi}i∈I\J is a frame. In fact, (1,
Example 5.1) is an example of a Parseval frame with infinite excess such that
{fi}i∈I\J is not a frame for any infinite subset J of I. Several characterizations
of when there does exist an infinite subset J such that {fi}i∈I\J is a frame
were obtained in (1), quoted in Theorem 6 below and extended in Theorem 9.

In this paper we are concerned with the special case of Gabor frames for the
Hilbert space L2(Rd). For x, ω ∈ Rd, let Txf(t) = f(t − x) and Mwf(t) =
e2πiω·tf(t) denote the unitary operators of translation and modulation. Then
we define a time-frequency shift of a function f on Rd by z = (x, ω) ∈ R2d =
Rd ×Rd to be

π(z)f(t) = MωTxf(t) = e2πiω·t f(t− x). (3)

Given a fixed window function g ∈ L2(Rd) and given a sequence Λ of points
in R2d (repetitions are allowed), the Gabor system generated by g and Λ is

G(g,Λ) = {π(λ)g}λ∈Λ. (4)

A Gabor system which is a frame is called a Gabor frame. We refer to (7; 17; 20)
for background information on Gabor and other frames.
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Understanding the redundancy of frames, and of Gabor frames in particular,
is a fundamental issue that has impact on many applications. For example, in
multiple description encoding schemes, coefficients may be lost due to channel
erasure. An analysis of such encoders using Gabor frames was obtained in (2).
The problem of erasures in the setting of finite dimensional frames was consid-
ered by Goyal, Kovačević and Kelner in (16) and comprehensively analyzed
in (4). In (9), Eldar and Bölcskei studied the impact of removing single or
multiple elements from unitarily generated frames, and obtained estimates of
the frame bounds for such frames.

In this paper we consider the redundancy of Gabor frames with respect to
arbitrary sequences of time-frequency shifts Λ. We prove, assuming some slight
restrictions on the generator g and on the set Λ, that any Gabor frame which
is not a Riesz basis has infinite excess, and furthermore that an infinite subset
of the frame may be removed yet leave a frame.

Very few theoretical results are available for the “irregular” Gabor systems
considered in this paper. Most results for Gabor systems require a structural
assumption on Λ, usually that Λ = αZd × βZd (a “rectangular lattice”).
However, Gabor systems with respect to other sequences Λ of time-frequency
shifts arise naturally, for example by perturbations of a regular system or
directly from the constraints of an application, as in (25), where a Gabor
frame with a non-rectangular lattice Λ is applied to wireless coding. It is
shown in (22) that Gabor systems which are orthonormal bases for L2(Rd)
can exist even with completely aperiodic Λ.

Two important results that are available for irregular Gabor systems are the
density theorems of Ramanathan and Steger (23) and of Janssen (21). The
result of Ramanathan and Steger (as extended in (5)) is as follows.

Theorem 1 (Density Theorem)

a. If G(g,Λ) is a frame for L2(Rd), then 1 ≤ D−(Λ) ≤ D+(Λ) < ∞.

b. If G(g,Λ) is a Riesz basis for L2(Rd), then D−(Λ) = D+(Λ) = 1.

Here D±(Λ) are the upper and lower Beurling densities of Λ, which measure
in some sense the average number of elements of Λ lying inside sets of unit
measure (defined precisely in Section 2.1). To prove Theorem 1, Ramanathan
and Steger showed that each Gabor frame satisfies a certain Homogeneous Ap-
proximation Property (HAP). This HAP seems to be of independent interest,
yet, so far as we are aware, no application of it to results other than density
conditions has been made.

Janssen has obtained in (21) another density result, for the case of generalized
Gabor systems in L2(R) of the form {gm(x− na)}m,n∈Z. Assuming that each
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gm is localized in frequency around a point bm, and given some simultaneous
control on the decay of the functions gm in the frequency domain, Janssen
obtained a necessary condition on the density of the set {(na, bm)}m,n∈Z in
order that {gm(x − na)}m,n∈Z be a frame. Although we will not pursue this
type of generalization here, it is an interesting topic for future work.

Our first main result is the following theorem (Theorem 2). It states that, with
only a mild restriction on g and the assumption that D+(Λ) > 1, there is a
fundamental connection between a certain quantity directly tied to the excess
of a Gabor frame and the density of that frame. Moreover, the HAP plays an
important role in the proof. An immediate consequence of this relationship
is that not only is the excess of the Gabor frame infinite, but there exists
an infinite subset that can be removed yet still leave a frame. The form of
the inequality (5) in Theorem 2 suggests the potential for additional insights
into frame theory in general by examining trace-like features of the projection
operator associated to a frame.

The modulation spaceMp appearing in the statement of the following theorem
is defined precisely in Section 2.4. We remark here only that membership in
Mp corresponds to a certain amount of joint localization in both time and
frequency, that Mp is dense in L2 for p < 2, and that M2 = L2. The set I(r, z)
appearing in the statement of the theorem is the intersection of Λ with the
cube Q(r, z) centered at z with side lengths r.

Theorem 2 Let G(g,Λ) be a Gabor frame for L2(Rd). If g ∈
⋃

1≤p<2M
p, then

lim inf
r→∞

inf
z∈R2d

1

|I(r, z)|

∑

λ∈I(r,z)

〈gλ, g̃λ〉 ≤
1

D+(Λ)
. (5)

Consequently, if D+(Λ) > 1 then there exists an infinite subset J of Λ such
that G(g,Λ\J) is a frame for L2(Rd).

If G(g,Λ) is an overcomplete frame and Λ is a lattice in R2d, then necessarily
D+(Λ) > 1 (a lattice is the image of Z2d under an invertible linear transfor-
mation). However, this is not the case when Λ is not a lattice. For example,
we can start with a Gabor Riesz basis G(g,Λ), which by the Density Theorem
must satisfy D−(Λ) = D+(Λ) = 1, and add finitely many points to Λ (or even
infinitely many if judiciously chosen) to obtain an overcomplete Gabor frame
with the same density. This marginal case is not addressed by Theorem 2.

Theorem 2 can be extended to the case of frames of the form G(g1,Λ1)∪ · · · ∪
G(gr,Λr). Our second main result states that in the rectangular lattice setting,
i.e., the case where Λk has the form αkZ

d×βkZ
d, the assumption in Theorem 2

that g lies in some modulation space Mp can be removed. Additionally, for
this result we only need to require that the system be a frame for its closed

4



span, not for the entire space. This result was obtained in (1) for the special
case that either (α1, . . . , αr) or (β1, . . . , βr) are rationally related, including
in particular the case r = 1. We present in this paper a new approach that
applies even to the irrationally related case.

Theorem 3 Let g1, . . . , gr ∈ L2(Rd), and let Λk = αkZ
d × βkZ

d for k =
1, . . . , r. If F = G(g1,Λ1) ∪ · · · ∪ G(gr,Λr) is an overcomplete frame for its
closed span H in L2(Rd), then this frame has infinite excess and there exists
an infinite subset of F that can be removed yet leave a frame for H. In fact,
this subset can be taken to have the form {Tαknj

gk}
∞
j=1, i.e., translates of one

of the generators gk.

Theorem 3 can be extended to more general lattices by applying a metaplectic
transformation, cf. (17, Sec. 9.4) or (18) for background information on this
type of extension. In particular, by applying a metaplectic transformation,
Theorem 3 can be extended to the case where each Λi is a symplectic lattice
in R2d with respect to the same symplectic matrix, i.e., each Λi has the form
Λi = A(αiZ

d × βiZ
d) where A is a fixed 2d × 2d symplectic matrix. When

d = 1, every lattice in R2 is a symplectic lattice, but this is not the case when
d > 1. Specializing to the case d = 1 and a single generator therefore yields
the following corollary.

Corollary 4 Let g ∈ L2(R), and let Λ be a lattice in R2. If F = G(g,Λ) is
an overcomplete frame for its closed span H in L2(R), then this frame has
infinite excess and there exists an infinite subset of F that can be removed yet
leave a frame for H.

The techniques used to prove Theorem 3 can also be applied to the case of
wavelets. Given a > 1 and b > 0, define the wavelet system generated by g, a,
b to be

W(g, a, b) = {and/2g(anx−mb)}m∈Zd,n∈Z. (6)

Then the following result can be proved similarly to Theorem 3.

Theorem 5 Let g1, . . . , gr ∈ L2(Rd), let a1, . . . , ar > 1, and let b1, . . . , br > 0
be given. If F = W(g1, a1, b1) ∪ · · · ∪ W(gr, ar, br) is an overcomplete frame
for its closed span H in L2(Rd), then this frame has infinite excess and there
exists an infinite subset of F that can be removed yet leave a frame for H. In
fact, this subset can be taken to consist of dilates of one of the generators gk.
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2 Preliminaries

2.1 General Notation

Let Λ be a sequence of points in R2d. Then the lower and upper Beurling
densities of Λ are, respectively,

D−(Λ) = lim inf
r→∞

inf
z∈R2d

|Λ ∩Q(r, z)|

r2d
(7)

and

D+(Λ) = lim sup
r→∞

sup
z∈R2d

|Λ ∩Q(r, z)|

r2d
, (8)

where |E| denotes the cardinality of a set E, and where Q(r, z) is the cube
centered at z = (z1, . . . , z2d) ∈ R2d with side lengths r, i.e.,

Q(r, z) =
2d
∏

i=1

[zi −
r

2
, zi +

r

2
]. (9)

2.2 Excess

The following result from (1) will play an important role.

Theorem 6 Let F = {fi}i∈I be a frame for a Hilbert space H, with standard
dual frame F̃ = {f̃i}i∈I . Then the following statements are equivalent.

a. There exists an infinite J1 ⊂ I such that {fi}I\J1 is a frame for H.

b. There exists L > 0 and an infinite J2 ⊂ I such that for each j ∈ J2,
{fi}i 6=j is a frame for H with lower frame bound L.

c. There exists an infinite J3 ⊂ I such that sup
i∈J3

〈fi, f̃i〉 < 1.

Remark 7 a. It is easy to see that 0 ≤ 〈fi, f̃i〉 ≤ 1 for any frame, because
〈fi, f̃i〉 = ‖S−1/2fi‖

2 and {S−1/2fi}i∈I is a Parseval frame for H.

b. Although the sets J1, J2, J3 in Theorem 6 need not coincide in general, we
do have J1 ⊂ J2.

c. Theorem 6 can be refined to include sharp frame bound estimates, cf. (1)
for details.
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d. If T (f) = {〈f, fi〉}i∈I is the analysis operator for the frame F , then P =
T (T ∗T )−1T ∗ is the orthogonal projection of ℓ2(I) onto range(T ). The diagonal
elements of the matrix representation for P in the standard basis for ℓ2(I) are
〈fi, f̃i〉.

The following result provides a useful sufficient condition for ensuring that
statement c in Theorem 6 will hold.

Lemma 8 Let a = (ai)i∈I be a countable sequence of real numbers with 0 ≤
ai ≤ 1 for each i. If there exist finite subsets In of I such that lim |In| = ∞
and

lim inf
n→∞

1

|In|

∑

i∈In

ai < 1, (10)

then there is an infinite subset J ⊂ I such that sup
j∈J

aj < 1.

PROOF. Let r = lim infn→∞
1

|In|

∑

i∈In ai, and choose s, ε so that r < s−ε <

s < 1. Define Fn = {i ∈ In : ai ≤ s}. By (10), there exist nk → ∞ such that

1

|Ink
|

∑

i∈Ink

ai ≤ s− ε. (11)

At most |Fnk
| terms in the summation on the left side of (11) are smaller

than s, so we have

s− ε ≥
1

|Ink
|

∑

i∈Ink

ai ≥
s (|Ink

| − |Fnk
|)

|Ink
|

= s−
|Fnk

|

|Ink
|
. (12)

Hence |Fnk
|/|Ink

| ≥ ε for each k. Since lim |In| = ∞, it follows that |
⋃

Fn| =
∞. ✷

2.3 Deletions from Frames

In this section we will prove some new results which extend Theorem 6 further.

Theorem 9 Let F = {fi}i∈I be a frame for a Hilbert space H, with frame
bounds A, B. Let J ⊂ I be given, and define truncated analysis operators
TJ :H → ℓ2(J) and TI\J :H → ℓ2(I\J) by

TJ(f) = (〈f, fi〉)i∈J and TI\J(f) = (〈f, fi〉)i∈I\J . (13)
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Then the following statements hold.

a. If there exists a bounded operator L: ℓ2(J) → ℓ2(I\J) such that

γ = ‖T ∗
J − T ∗

I\JL‖
2 <

A

2
, (14)

then F ′ = {fi}i∈I\J is a frame for H, with frame bounds A′ = A−2γ
1+2‖L‖2

,

B′ = B.

b. If F ′ = {fi}i∈I\J is a frame for H, then there exists a bounded operator
L: ℓ2(J) → ℓ2(I\J) such that (14) holds with γ = 0.

PROOF. a. Assume L satisfies (14). Then

‖TJf‖
2 ≤ (‖TJf − L∗TI\Jf‖+ ‖L∗TI\Jf‖)

2

≤ 2 ‖TJf − L∗TI\Jf‖
2 + 2 ‖L∗TI\Jf‖

2

≤ 2γ ‖f‖2 + 2 ‖L‖2 ‖TI\Jf‖
2. (15)

Therefore,

A ‖f‖2 ≤
∑

i∈I

|〈f, fi〉|
2 = ‖TJf‖

2 + ‖TI\Jf‖
2

≤ 2γ ‖f‖2 + (1 + 2 ‖L‖2) ‖TI\Jf‖
2. (16)

Consequently,

A′ ‖f‖2 =
A− 2γ

1 + 2‖L‖2
‖f‖2 ≤ ‖TI\Jf‖

2 =
∑

i∈I\J

|〈f, fi〉|
2, (17)

which establishes that F ′ has a lower frame bound of A′. The upper frame
bound is trivial since F ′ is a subset of F .

b. Assume F ′ = {fi}i∈I\J is a frame for H, and let F̃ ′ be the standard dual

frame of F ′ (note that, in general, F̃ ′ will not coincide with {f̃i}i∈I\J , where

F̃ = {f̃i}i∈I is the standard dual frame of F). Let T̃I\J be the analysis operator

for F̃ ′. Then T ∗
I\J T̃I\J = 1, the identity operator on H. Define L = T̃I\JT

∗
J .

Then T ∗
J − T ∗

I\JL = 0, so (14) is satisfied with γ = 0. ✷

Specializing to the case of removing a single element yields the following corol-
lary, which will play an important role in the proof of Theorem 3 that is
presented in Section 4 below.
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Corollary 10 Let F = {fi}i∈I be a frame for a Hilbert space H, with frame
bounds A, B. Let j ∈ I be given. If there exists a sequence a = (ai)i 6=j ∈
ℓ2(I\{j}) such that

γ =
∥

∥

∥fj −
∑

i 6=j

aifi
∥

∥

∥

2
<

A

2
, (18)

then F ′ = {fi}i 6=j is a frame for H with frame bounds A′ = A−2γ
1+2‖a‖2

ℓ2

, B′ = B.

PROOF. Set J = {j}, and define L:C → ℓ2(I\{j}) by L(c) = ca. Then
‖L‖ = ‖a‖ℓ2 , and

(T ∗
J − T ∗

I\JL)(c) = cfj −
∑

i 6=j

caifi, c ∈ C. (19)

Hence

γ = ‖T ∗
J − T ∗

I\JL‖
2 =

∥

∥

∥fj −
∑

i 6=j

aifi
∥

∥

∥

2
, (20)

so the result follows from Theorem 9. ✷

2.4 Modulation Spaces

The modulation spaces were introduced and extensively investigated by Fe-
ichtinger over the period 1980–1995, with some of the main references be-
ing (10; 11; 12; 13; 14; 15). The modulation space norms quantify the time-
frequency content of a function or distribution, and appear naturally in mathe-
matical problems involving time-frequency shifts. We refer to (17) for detailed
discussion and applications.

For our purposes, the following special case of unweighted modulation spaces
will be sufficient. Let G(x) = 2d/4e−πx·x be the Gaussian function, normalized
so that ‖G‖2 = 1. Then for 1 ≤ p ≤ ∞, the modulation space Mp consists of
all tempered distributions f ∈ S ′(Rd) such that

‖f‖Mp =
(

∫

R2d

|〈f, π(z)G〉|p dz
)1/p

=
(
∫

Rd

∫

Rd

|〈f,MωTxG〉|p dx dω
)1/p

< ∞, (21)
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with the usual adjustment if p = ∞.

Remark 11 a. Mp is a Banach space for each 1 ≤ p ≤ ∞. Any nonzero
function g ∈ M1 (including all Schwartz-class functions in particular) can be
substituted for the Gaussian G in (21) to produce an equivalent norm for Mp,
cf. Lemma 16 below.

b. M2 = L2, and S ( Mp ( M q ( S ′ for 1 ≤ p < q ≤ ∞, where S is the
Schwartz class.

c. If 1 ≤ p < ∞ then (Mp)′ = Mp′ , where 1
p
+ 1

p′
= 1.

d. Mp is isometric under time-frequency shifts, i.e.,

∀ z ∈ R2d, ‖π(z)f‖Mp = ‖f‖Mp . (22)

e. If Q is a cube in Rd, then h = 1Q ∈ Mp for 1 < p ≤ ∞.

The case p = 1 of the following proposition is a standard result for the mod-
ulation spaces. We will require the following extension to other values of p. A
proof of this proposition was provided to us by K. Gröchenig and E. Cordero,
and is reported in the Appendix.

Proposition 12 Let 1 ≤ p, q, r ≤ ∞ be such that 1
p
+ 1

q
= 1 + 1

r
, and let Λ

be a sequence of points in R2d satisfying D+(Λ) < ∞. There there exists a
constant C = C(p, q,Λ) > 0 such that

∀ g ∈ Mp, ∀ f ∈ M q,
(

∑

λ∈Λ

|〈f, π(λ)g〉|r
)1/r

≤ C ‖g‖Mp ‖f‖Mq . (23)

2.5 A Recurrence Lemma

The following recurrence lemma will be used later in the proof of Theorem 3.

Lemma 13 Let α1, . . . , αr > 0 be given, and fix δ > 0. Then there exist
infinitely many points (n1

j , . . . , n
r
j) ∈ Zd × · · · × Zd such that for each j =

1, 2, . . . we have

|α1n
1
j − αkn

k
j | < δ, k = 2, . . . , r. (24)

PROOF. It suffices to prove the case d = 1. Let Tr = [0, α1) × · · · × [0, αr)
be the r-torus, and define a translation T :Tr → Tr by T (x1, . . . , xr) = (x1 +
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1 mod α1, . . . , xr + 1 mod αr). Let U be the open ball of radius δ/2 centered
at 0 in Tr. Then, since T is a measure-preserving mapping, we have by the
Poincare Recurrence Theorem ((24, p. 11) or (26, Thm. 1.4)) that almost every
point of U returns to U infinitely often under iteration by T . Let a ∈ U be any
such point. Then there exist infinitely many positive integers N1 < N2 < · · ·
such that TNj(a) ∈ U , i.e., for each j we have

|(Nj + a) mod αk| <
δ

2
, k = 1, . . . , r. (25)

Hence, there exist integers nk
j such that

|(Nj + a)− nk
jαk| <

δ

2
, k = 1, . . . , r, (26)

and consequently,

|n1
jα1 − nk

jαk| < δ, k = 2, . . . , r. (27)

By taking δ small enough, we are assured that the integers n1
j are distinct,

which completes the proof. ✷

3 Proof of Theorem 2

We will prove Theorem 2 in this section. We break the proof down into several
smaller steps. We assume throughout this section that G(g,Λ) is a frame for
L2(Rd) with frame bounds A, B, that g lies in Mp for some 1 ≤ p < 2, and
that 1 < D+(Λ) < ∞.

The frame operator for G(g,Λ) is Sf =
∑

λ∈Λ 〈f, π(λ)g〉 π(λ)g. The standard
dual frame of G(g,Λ) is G̃ = {g̃λ}λ∈Λ where g̃λ = S−1(π(λ)g). If Λ is a lattice
in R2d, then it can be shown that this dual frame is itself a Gabor frame of
the form G(γ,Λ), but this need not be the case when Λ is not a lattice. For
simplicity of notation, we will write

gλ = π(λ)g, (28)

but we emphasize that g̃λ need not be of the form π(λ)γ.
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3.1 Goal

Our goal is to show that equation (5) holds, and that this implies that an
infinite subset J of Λ can be found such that G(g,Λ\J) is still a frame. To see
how this second statement is a consequence of the first, recall from Theorem 6
that to show that there is an infinite subset of Λ which may be removed yet
leave a frame, we need to show that there exists some (possibly different)
infinite subset J ⊂ Λ such that

sup
λ∈J

〈gλ, g̃λ〉 < 1. (29)

Further, by Lemma 8, to do this it suffices to show that

lim inf
r→∞

inf
z∈R2d

1

|I(r, z)|

∑

λ∈I(r,z)

〈gλ, g̃λ〉 < 1, (30)

where I(r, z) = Λ ∩ Q(r, z). We will show that the quantity on the left side
of the preceding equation is actually bounded by 1/D+(Λ). Hence, when
D+(Λ) > 1, there will be an infinite J for which (29) is satisfied.

For simplicity of notation, we will often use the abbreviation I = I(r, z).
Define the truncated frame operators

SIf =
∑

λ∈I

〈f, gλ〉 gλ and SΛ\If =
∑

λ∈Λ\I

〈f, gλ〉 gλ. (31)

We note the following basic facts.

Lemma 14 a. ‖gλ‖
2
2 ≤ B for each λ ∈ Λ.

b. ‖g̃λ‖
2
2 ≤

1
A
for each λ ∈ Λ.

c. ‖SI‖, ‖SΛ\I‖ ≤ ‖S‖ ≤ B (operator norms).

d. ‖S−1‖ ≤ 1
A
.

e. The trace of SIS
−1 is tr(SIS

−1) =
∑

λ∈I

〈gλ, g̃λ〉.

Thus, our goal is to show that

lim inf
r→∞

inf
z∈R2d

1

|I|
tr(SIS

−1) ≤
1

D+(Λ)
, I = I(r, z). (32)

12



3.2 Some Notation

Let ε > 0 be fixed for the remainder of this proof. Since

D+(Λ) = lim sup
r→∞

sup
z∈R2d

|I(r, z)|

r2d
, (33)

there exists a strictly increasing sequence rk → ∞ and points zk ∈ R2d such
that

∀ k, |I| = |I(rk, zk)| ≥ r2dk (D+(Λ)− ε). (34)

3.3 One Gabor Orthonormal Basis and the HAP

Let Q = Q(1, 0) = [−1
2
, 1
2
]d, and set h = 1Q, the characteristic function of Q.

Then

G(h,Z2d) = {π(δ)h : δ ∈ Z2d} = {hδ : δ ∈ Z2d} (35)

is a Gabor orthonormal basis for L2(Rd). We will use this system as a refer-
ence for comparison to G(g,Λ). We could use another Gabor orthonormal or
Riesz basis, but by the Balian-Low theorem the generator of any such basis is
limited in its joint time-frequency concentration. In particular, no generator of
a Gabor Riesz basis can lie in M1, cf. (15), (18). The particular Gabor system
G(h,Z2d) has the advantage that h ∈ M q for each q > 1.

We apply the Homogeneous Approximation Property for the Gabor orthonor-
mal basis G(h,Z2d) to the function g. In particular, by (5, Cor. 3.5), there
exists an R > 0 such that

∀ z ∈ R2d, ∀ r ≥ 0, ∀µ ∈ Q(r, z), ‖(1− PV )gµ‖2 < ε, (36)

where PV is the orthogonal projection of L2(Rd) onto

V = V (r +R, z) = span{hδ : δ ∈ Z2d ∩Q(r +R, z)}. (37)

We will concentrate for a while on a specific r = rk > R and z = zk ∈ R2d.
We will suppress some indices and write

I = I(rk, zk) = Λ ∩Q(rk, zk), (38)

13



V = V (rk +R, zk) = span{hδ : δ ∈ Z2d ∩Q(rk +R, zk)}, (39)

W = V (rk −R, zk) = span{hδ : δ ∈ Z2d ∩Q(rk −R, zk)}, (40)

U = V (R, λ) = span{hδ : δ ∈ Z2d ∩Q(R, λ)}, (41)

and let PV , PW , PU denote the orthogonal projection of L2(Rd) onto V ,W , and
U , respectively. In this notation, note that the HAP (36) implies in particular
that

∀λ ∈ I, ‖(1− PV )gλ‖2 < ε, (42)

and that

∀λ ∈ Λ, ‖(1− PU)gλ‖2 < ε. (43)

3.4 First Estimate

Recall that our goal is to estimate 1
|I|

tr(SIS
−1). Write

tr(SIS
−1) = tr((1− PV )SIS

−1) + tr(PV SIS
−1). (44)

For the first term on the right of (44), observe that

(1− PV )SIS
−1f = (1− PV )

(

∑

λ∈I

〈S−1f, gλ〉 gλ

)

=
∑

λ∈I

〈f, g̃λ〉 (1− PV )gλ. (45)

Computing the trace, applying the HAP in the form of (42), and using the
boundedness of the norms of the dual frame elements, we have

tr((1− PV )SIS
−1) =

∑

λ∈I

〈(1− PV )gλ, g̃λ〉

≤
∑

λ∈I

‖(1− PV )gλ‖2 ‖g̃λ‖2 ≤
ε|I|

A1/2
. (46)

3.5 Second Estimate

Now we will work on the second term on the right of (44). We will expand
that term into three parts and then simplify by using the relations

14



PV (1− PW ) = PV ∩W⊥ , (47)

PV PW = PW (since W ⊂ V ), (48)

S = SI + SΛ\I . (49)

The three terms in the expansion are obtained as follows:

tr(PV SIS
−1) = tr(PV (S − SΛ\I)S

−1)

= tr(PV )− tr(PV (1− PW )SΛ\IS
−1)− tr(PV PWSΛ\IS

−1)

= tr(PV )− tr(PV ∩W⊥SΛ\IS
−1)− tr(PWSΛ\IS

−1)

≤ tr(PV ) + |tr(PV ∩W⊥SΛ\IS
−1)|+ |tr(PWSΛ\IS

−1)|. (50)

In the following we will bound each of these three terms separately.

3.5.1 First term

To estimate the first term in (50), note that the dimension of V is known
because G(h,Z2d) is an orthonormal basis. Consequently,

tr(PV ) = dim(V ) = |Z2d ∩Q(rk +R, zk)| ≤ (rk +R + 1)2d. (51)

3.5.2 Second term

For the second term in (50), note that since G(h,Z2d) is an orthonormal basis,
we have that

V ∩W⊥ = span{hδ : δ ∈ Z2d ∩ [Q(rk +R, zk) \Q(rk −R, zk)]}. (52)

The set Q(rk +R, zk) \Q(rk −R, zk) is a “square annulus,” so

dim(V ∩W⊥) = |Z2d ∩ [Q(rk +R, zk) \Q(rk −R, zk)]|

≤ (rk +R + 1)2d − (rk −R− 1)2d. (53)

Now we apply the fact that

X = X∗ ≥ 0 ⇒ |tr(XY )| ≤ tr(X) ‖Y ‖ (54)

to compute that

|tr(PV ∩W⊥SΛ\IS
−1)| ≤ tr(PV ∩W⊥) ‖SΛ\IS

−1‖

15



≤ dim(V ∩W⊥) ‖SΛ\I‖ ‖S
−1‖

≤
B

A
((rk +R + 1)2d − (rk −R− 1)2d). (55)

3.5.3 Third term

Now we come to the third term in (50). Observe that

PWSΛ\IS
−1f = PW

∑

λ∈Λ\I

〈S−1f, gλ〉 gλ =
∑

λ∈Λ\I

〈f, g̃λ〉PW gλ. (56)

Let

D = Z2d ∩Q(rk −R, zk). (57)

Then since G(h,Z2d) is an orthonormal basis and since W = {hδ : δ ∈ D}, we
have PWhδ = hδ when δ ∈ D and PWhδ = 0 otherwise. Hence

|tr(PWSΛ\IS
−1)|2 =

∣

∣

∣

∣

∑

δ∈Z2d

∑

λ∈Λ\I

〈hδ, g̃λ〉 〈PW gλ, hδ〉
∣

∣

∣

∣

2

=
∣

∣

∣

∣

∑

δ∈Z2d

∑

λ∈Λ\I

〈hδ, g̃λ〉 〈gλ, PWhδ〉

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∑

δ∈D

∑

λ∈Λ\I

〈hδ, g̃λ〉 〈gλ, hδ〉

∣

∣

∣

∣

2

≤
(

∑

δ∈D

∑

λ∈Λ\I

|〈hδ, g̃λ〉|
2
)(

∑

δ∈D

∑

λ∈Λ\I

|〈gλ, hδ〉|
2
)

. (58)

We can bound the first factor on the right of (58) by using the fact that
{g̃λ}λ∈Λ is a frame for L2(Rd) with frame bounds 1

B
, 1

A
:

∑

δ∈D

∑

λ∈Λ\I

|〈hδ, g̃λ〉|
2 ≤

∑

δ∈D

1

A
‖hδ‖

2
2 =

|D|

A
≤

(rk −R + 1)2d

A
. (59)

For the second factor on the right of (58), recall that g ∈ Mp where 1 ≤ p < 2.
Fix p < s < 2. Then

∑

δ∈D

∑

λ∈Λ\I

|〈gλ, hδ〉|
2 ≤

(

sup
λ∈Λ\I, δ∈D

|〈gλ, hδ〉|
2−s

)

∑

δ∈D

∑

λ∈Λ\I

|〈gλ, hδ〉|
s. (60)

We will estimate each of these two pieces separately.
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To bound the first factor on the right of (60), consider a typical λ ∈ Λ\I and
δ ∈ D. We have that

|〈gλ, hδ〉| = |〈gλ, PWhδ〉| ≤ ‖PW gλ‖2 ‖hδ‖2 = ‖PW gλ‖2. (61)

Letting U = V (R, λ), we have by the HAP in the form of (43) that

‖(1− PU)gλ‖2 < ε. (62)

However, W = V (rk−R, zk) and λ /∈ I = I(rk, zk), so it follows that U ⊂ W⊥

and W ⊂ U⊥. Therefore PW ≤ PU⊥ = 1− PU , so

∀ δ ∈ D, ∀λ ∈ Λ\I, |〈gλ, hδ〉| ≤ ‖PW gλ‖2 ≤ ‖(1− PU)gλ‖ < ε.(63)

To estimate the second factor on the right of (60), let q be such that 1
p
+ 1

q
=

1+ 1
s
. Note that q > 1, so hδ ∈ M q. Since M q is invariant under time-frequency

shifts, we have ‖hδ‖Mq = ‖h‖Mq for every δ. Since g ∈ Mp, we therefore have
from Proposition 12 that

∑

δ∈D

∑

λ∈Λ\I

|〈gλ, hδ〉|
s ≤

∑

δ∈D

Cs ‖g‖sMp ‖hδ‖
s
Ms

= Cs ‖g‖sMp ‖h‖sMs |D|

≤ C1 (rk −R + 1)2d. (64)

Combining the estimates (58)–(64) yields

|tr(PWSΛ\IS
−1)|2 ≤

(rk −R + 1)2d

A
ε2−s C1 (rk −R + 1)2d, (65)

or

|tr(PWSΛ\IS
−1)| ≤ C2 ε

2−s
2 (rk −R + 1)2d. (66)

3.6 Combine the Terms

Combining all the previous estimates yields for each I = I(rk, zk) that

1

|I|
tr(SIS

−1) ≤
1

|I|

(

|tr((1− PV )SIS
−1)| + |tr(PV )|
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+ |tr(PV ∩W⊥SΛ\IS
−1)| + |tr(PWSΛ\IS

−1|
)

≤
ε

A1/2
+

(rk +R + 1)2d

r2dk (D+(Λ)− ε)

+
B ((rk +R + 1)2d − (rk −R− 1)2d)

Ar2dk (D+(Λ)− ε)

+
C2 ε

2−s
2 (rk −R + 1)2d

r2dk (D+(Λ)− ε)
, (67)

where we have bounded 1/|I| by using (34). Since zk is one point in R2d and
since rk → ∞, we therefore have

lim inf
r→∞

inf
z∈R2d

1

|I|
tr(SIS

−1) ≤
ε

A1/2
+

1

D+(Λ)− ε
+ 0 +

C2 ε
2−p

2

D+(Λ)− ε
, (68)

where I = I(r, z) in the equation above. Since ε was arbitrary, we conclude
that

lim inf
r→∞

inf
z∈R2d

1

|I|
tr(SIS

−1) ≤
1

D+(Λ)
, (69)

which was our goal. This completes the proof of Theorem 2.

4 Proof of Theorem 3

We will prove Theorem 3 in this section. We are given gk ∈ L2(Rd) and
Λk = αkZ

d × βkZ
d for k = 1, . . . , r, and we assume that F =

⋃r
k=1G(gk,Λk)

is an overcomplete frame for its closed span H in L2(R). We must show that
some infinite subset of some G(gj,Λj) can be removed from F so that the
remaining set is still a frame for H, and further this set can be chosen to
consist of translates of a single generator gi.

Let A, B denote the frame bounds for F . For simplicity of notation, we will
write the elements of F as

gkm,n(x) = π(βkm,αkn)gk(x)

= MβkmTαkngk(x)

= e2πiβkm·xgk(x− αkn), (70)

where m,n ∈ Zd and k = 1, . . . , r.
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Since F is overcomplete, there is some element which may be removed yet still
leave a frame for H. Without loss of generality we may assume it is an element
of G(g1,Λ1), say h = g1k,ℓ. Since hm,n = e−2πiβ1k·α1ng1m+k,n+ℓ, the elements of
G(h,Λ1) are exactly the elements of G(g1,Λ1) except in a different order and
multiplied by constants of magnitude 1 (here is one point where we make use
of the assumption that the Λk are lattices). Without loss of generality we may
therefore assume that the element removed is g1 = g10,0.

Define an index set

Γ0 = ({1, . . . , r} × Zd × Zd) \ {(1, 0, 0)}. (71)

Then

F ′
0 = F \ {g10,0} = {gkm,n}(k,m,n)∈Γ0

(72)

is a frame for H. We will show that there exist infinitely many indices nj ∈ Zd

such that if we set

Γnj
= ({1, . . . , r} × Zd × Zd) \ {(1, 0, nj)}, (73)

then

F ′
nj

= F \ {g10,nj
} = {gkm,n}(k,m,n)∈Γnj

(74)

is also frame for h, and furthermore all of these frames F ′
nj

have the same
lower frame bound L > 0. It then follows from Theorem 6 that infinitely
many elements may be removed from F yet leave a frame, and furthermore,
this set to be removed is a subset of {g10,nj

}∞j=1, which is a set of translates
of g1.

Let S0 be the frame operator for the frame F ′
0. Define

akm,n = 〈S−1
0 g1, g

k
m,n〉, (75)

and set a = (akm,n)(k,m,n)∈Γ0
. Note that a ∈ ℓ2(Γ0) since the scalars akm,n are

the frame coefficients of S−1
0 g with respect to the frame F ′

0.

Define

h1 =
∑

(m,n) 6=(0,0)

a1m,n g
1
m,n (76)
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and

hk =
∑

m,n∈Zd

akm,n g
k
m,n, k = 2, . . . , r. (77)

Then

r
∑

k=1

hk =
∑

(k,m,n)∈Γ0

akm,n g
k
m,n

=
∑

(k,m,n)∈Γ0

〈S−1
0 g1, g

k
m,n〉 g

k
m,n

= S0(S
−1
0 g1) = g1. (78)

Fix ε <
√

A/2. Since translation is strongly continuous in L2(Rd), there exists
a δ > 0 such that

|t| < δ ⇒ ‖hk − Tthk‖2 <
ε

r − 1
, k = 2, . . . , r. (79)

By Lemma 13, there exist points (n1
j , . . . , n

r
j) ∈ Zd × · · · × Zd for j = 1, 2, . . .

such that

|α1n
1
j − αkn

k
j | < δ, k = 2, . . . , r. (80)

We will show that for each j,

γj =
∥

∥

∥g10,n1

j
−

∑

(k,m,n)∈Γ
n1

j

akm,n−nk
j
gkm,n

∥

∥

∥

2

2
≤ ε2 <

A

2
. (81)

Consequently, by Corollary 10 we will have that F ′
n1

j
is a frame for H with

lower frame bound A′
j =

A−2γj
1+2‖a‖2

ℓ2

. Since A′
j ≥

A−2ε2

1+2‖a‖2
ℓ2

> 0, all the frames F ′
n1

j

will share the same single positive lower frame bound, and the proof will be
complete.

To prove (81), we first use (79) and (80) to compute that

∥

∥

∥

r
∑

k=2

(Tαkn
k
j
hk − Tα1n1

j
hk)

∥

∥

∥

2
≤

r
∑

k=2

‖hk − Tα1n1

j
−αkn

k
j
hk‖2 < ε. (82)

Therefore, since g10,n1

j
= Tα1n1

j
g1,
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∥

∥

∥g10,n1

j
−

r
∑

k=1

Tαkn
k
j
hk

∥

∥

∥

2

≤
∥

∥

∥Tα1n1

j
g1 −

r
∑

k=1

Tα1n1

j
hk

∥

∥

∥

2
+

∥

∥

∥

r
∑

k=2

(Tα1n1

j
hk − Tαkn

k
j
hk)

∥

∥

∥

2

< 0 + ε = ε. (83)

Finally,

r
∑

k=1

Tαkn
k
j
hk =

∑

(k,m,n)∈Γ0

akm,n g
k
m,n+nk

j
=

∑

(k,m,n)∈Γ
n1

j

akm,n−nk
j
gkm,n, (84)

so the proof is complete.

A Appendix: Proof of Proposition 12

We will prove Proposition 12 in this section. We thank Karlheinz Gröchenig
and Elena Cordero for providing this proof, which is related to techniques
developed in (6).

We obtain this proof by applying interpolation. We refer to (3) for background
on interpolation in general, and to (10; 12; 14) for results on the interpolation
properties of the modulation and Wiener amalgam spaces.

Definition 15 The Short-Time Fourier Transform of a tempered distribution
f with respect to a window function g is

Vgf(z) = 〈f, π(z)g〉, z ∈ R2d, (A.1)

whenever this is defined.

In particular, letting G(x) = 2d/4e−πx·x denote the Gaussian window (normal-
ized so that ‖G‖2 = 1), we can restate the definition of the modulation space
Mp given in Section 2.4 as follows:

Mp = {f ∈ S ′(Rd) : ‖f‖Mp = ‖VGf‖Lp < ∞}. (A.2)

The following lemma deals with the effect of replacing the Gaussian G by
another function g. An extension of this lemma shows that ‖Vgf‖Lp is actually
an equivalent norm for Mp for each nonzero function g ∈ M1.
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Lemma 16 If 1 ≤ p ≤ ∞, then

∀ g ∈ M1, ∀ f ∈ Mp, ‖Vgf‖Lp ≤ ‖g‖M1 ‖f‖Mp . (A.3)

PROOF. From (17, eq. (11.31)), there exists a constant C such that

‖Vgf‖Lp ≤ C ‖VgG‖L1 ‖VGf‖Lp = C ‖g‖M1 ‖f‖Mp . (A.4)

Further, the value of C is determined by the weight used to define the mod-
ulation space. Since we are dealing only with the unweighted case (or, equiv-
alently, the weight is identically 1), it can be shown that the constant is
C = 1. ✷

Let C = C(Rd) denote the space of all bounded, continuous functions on Rd

under the L∞ norm.

Let Q = [−1
2
, 1
2
]d. Define the Wiener amalgam space W (C, ℓp) to be the space

of all continuous functions f on Rd for which the norm

‖f‖W (C,ℓp) =
(

∑

k∈Zd

‖f · 1Q+k‖
p
∞

)1/p

(A.5)

is finite, with the usual adjustment if p = ∞. Note that W (C, ℓ∞) = L∞∩C =
C, while W (C, ℓp) is a proper subset of Lp ∩ C when p < ∞. We refer to
(17; 19; 20) for background information on Wiener amalgam spaces,

For the convenience of the reader we recall the main result of interpolation
theory (see Chapters 2 and 4 in (3) for precise definitions). For two Banach
function spaces S1, S2 that are subspaces of a Hausdorff topological vector
space U , we denote by [S1, S2]θ the interpolation space obtained by the com-
plex interpolation method with parameter θ ∈ [0, 1]. In particular, as shown
in (10; 12; 14), the interpolation spaces for the Wiener amalgam spaces and
the modulation spaces are given by:

[W (C, ℓp), W (C, ℓq)]θ = W (C, ℓr), (A.6)

and

[Mp, M q]θ = M r, (A.7)
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where

1

r
=

1− θ

p
+

θ

q
. (A.8)

Furthermore, if S1, S2 are subspaces of U and R1, R2 are subspaces of V , and
if T :U → V is a linear operator such that its restrictions T1:S1 → R1 and
T2:S2 → R2 are bounded operators, then its restriction

Tθ: [S1, S2]θ → [R1, R2]θ (A.9)

is also a bounded operator, with norm

‖Tθ‖B([S1,S2]θ,[R1,R2]θ) ≤ ‖T1‖
1−θ
B(S1,R1)

‖T2‖
θ
B(S2,R2)

, (A.10)

where B(S,R) denotes the Banach space of all bounded operators from S to R.

The following proposition is the key step in the proof of Proposition 12.

Proposition 17 Let 1 ≤ p, q, r ≤ ∞ be such that 1
p
+ 1

q
= 1+ 1

r
. If g ∈ Mp and

f ∈ M q, then Vgf ∈ W (C, ℓr). Further, there exists a constant C = C(p, q)
such that

∀ g ∈ Mp, ∀ f ∈ M q, ‖Vgf‖W (C,ℓr) ≤ C ‖g‖Mp ‖f‖Mq . (A.11)

PROOF. First let us show that Vgf is bounded and continuous. Since 1
p
+ 1

q
≥

1, it follows that p ≤ q′. Hence g ∈ Mp ⊂ M q′ while f ∈ M q. By Remark 11,
if 1 ≤ q < ∞ then M q′ is the dual of M q, while if 1 < q ≤ ∞ then M q is the
dual of M q′ . In either case, we can conclude that

|Vgf(z)| = |〈f, π(z)g〉| ≤ ‖f‖Mq ‖π(z)g‖Mq′ ≤ ‖f‖Mq ‖g‖Mp . (A.12)

In particular, Vgf is bounded. Now, at least one of p or q is finite, and since
|Vgf(ω, t)| = |Vfg(−ω,−t)|, it suffices to consider p < ∞. Letting G denote
the Gaussian function, we have for z, z′ ∈ R2d that

|Vgf(z)− Vgf(z
′)| = |〈f, π(z)g − π(z′)g〉|

≤ ‖f‖Mq ‖π(z)g − π(z′)g‖Mp .

= ‖f‖Mq ‖VG(π(z)g)− VG(π(z
′)g)‖Lp . (A.13)

Now write z = (x, ω) and z′ = (x′, ω′), and define

φz,z′(y, ξ) = e2πi[(ω
′−ξ)·x′−(ω−ξ)·x)]. (A.14)
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Then

|VG(π(z)g)− VG(π(z
′)g)| = |TzVGg − φz,z′ Tz′VG|, (A.15)

where Tz is the translation operator on R2d, so

‖VG(π(z)g)− VG(π(z
′)g)‖Lp

≤ ‖TzVGg − Tz′VGg‖Lp + ‖Tz′VGg − φz,z′ Tz′VG‖Lp

→ 0 as z → z′, (A.16)

the convergence in the first term following from the fact that translation is
strongly continuous on Lp when p < ∞, and in the second term from the
Lebesgue Dominated Convergence Theorem. Consequently Vgf is continuous
on R2d.

To complete the proof, we now progress through several cases.

Case 1: p = 1, 1 ≤ q ≤ ∞, r = q.

If q = 1 then we have f , g ∈ M1, so Vgf ∈ W (C, ℓ1) by (17, Prop. 12.1.11).
Further, by (17), there exists a constant C > 0 such that

‖Vgf‖W (C,ℓ1) ≤ C ‖g‖M1 ‖f‖M1 . (A.17)

In fact, the proof of this result shows that it suffices to take C = ‖1[−2,1]d‖L1 =
3d. On the other hand, if q = ∞ then by Lemma 16,

‖Vgf‖W (C,ℓ∞) = ‖Vgf‖L∞ ≤ ‖g‖M1 ‖f‖M∞ . (A.18)

The result for 1 < q < ∞ then follows from interpolating between these two
endpoints. In fact, if we set θ = 1/q then

1

q
=

θ

1
+

1− θ

∞
, (A.19)

and we have

[W (C, ℓ1), W (C, ℓ∞)]θ = W (C, ℓq) and [M1, M∞]θ = M q. (A.20)

Hence, with g fixed, applying interpolation to the mapping f 7→ Vgf therefore
yields
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‖Vgf‖W (C,ℓq) ≤ (3d ‖g‖M1)θ (‖g‖M1)1−θ ‖f‖Mq

= 3d/q ‖g‖M1 ‖f‖Mq . (A.21)

Case 2: 1
p
+ 1

q
= 1, r = ∞.

In this case we have p = q′. We have already shown that Vgf ∈ L∞ ∩ C =
W (C, ℓ∞), and by (A.12)

‖Vgf‖W (C,ℓ∞) = ‖Vgf‖L∞ ≤ ‖g‖Mq′ ‖f‖Mq . (A.22)

Case 3: General case, 1
p
+ 1

q
= 1 + 1

r
.

By Case 1, we have

‖Vgf‖W (C,ℓq) ≤ (3d/q ‖f‖Mq) ‖g‖M1 , (A.23)

and by Case 2, we have

‖Vgf‖W (C,ℓ∞) ≤ ‖f‖Mq ‖g‖Mq′ . (A.24)

Set θ = q/r. Then 0 ≤ θ ≤ 1 and

1

r
=

θ

q
+

1− θ

∞
and

1

p
=

θ

1
+

1− θ

q′
. (A.25)

Further,

[W (C, ℓq), W (C, ℓ∞)]θ = W (C, ℓr) and [M1, M q′ ]θ = Mp. (A.26)

With f fixed, applying interpolation to the mapping g 7→ Vgf therefore yields

‖Vgf‖W (C,ℓr) ≤ (3d/q ‖f‖Mq)θ (‖f‖Mq)1−θ ‖g‖Mp

= 3d/r ‖f‖Mq ‖g‖Mp , (A.27)

which completes the proof. ✷

The significance of membership of Vgf in the Wiener amalgam space is made
clear by the next result, which follows from (17, Prop. 11.1.4) and states that
the ℓr sequence-space norm of a set of separated samples of a function in
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W (C, ℓr) is bounded by the amalgam space norm of that function. A sequence
Λ is separated if there exists some δ > 0 such that any two different points of
Λ are at least a distance δ apart.

Proposition 18 Let 1 ≤ r ≤ ∞ be given. If Λ is separated, then there exists
a constant C = C(r,Λ) > 0 such that

∀F ∈ W (C, ℓr),
(

∑

λ∈Λ

|F (λ)|r
)1/r

≤ C ‖F‖W (C,ℓr). (A.28)

A proof of Proposition 12 now follows from combining Lemma 17 with Propo-
sition 18.

Proof of Proposition 12 Assume D+(Λ) < ∞. Then by (5, Lemma 2.3), Λ
can be written as a finite union of disjoint sequences Λ1, . . . ,Λk each of which
is separated. If g ∈ Mp and f ∈ M q, then Vgf ∈ W (C, ℓr) by Lemma 17.
Hence, by Proposition 18, we have for each j = 1, . . . , k that

∑

λ∈Λj

|〈f, π(λ)g〉|r =
∑

λ∈Λj

|Vgf(λ)|
r

≤ C1 ‖Vgf‖
r
W (C,ℓr)

≤ C2 ‖g‖
r
Mp ‖f‖rMq . (A.29)

Summing over j then completes the proof. ✷
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[24] Ya. G. Sinăı, ed., Dynamical systems, II. Ergodic theory with applica-
tions to dynamical systems and statistical mechanics (translated from the
Russian), Encyclopaedia of Mathematical Sciences, 2, Springer–Verlag,

27



Berlin, 1989.
[25] T. Strohmer and S. Beaver, Optimal OFDM system design for time-

frequency dispersive channels, IEEE Trans. Communications, to appear.
[26] P. Walters, An Introduction to Ergodic Theory, Springer–Verlag, New

York, 1982.

28


