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WAVELETS AND FRAMES

Christopher Heil*

Abstract. This paper presents basic results about frames in Hilbert spaces, and gives ex-

amples of two types of frames for L
2(R). These are the Weyl-Heisenberg frames, which are

translations and modulations of a single “mother wavelet”, and the affine frames, which are
translations and dilations of a mother wavelet.

0. Introduction. It is a well-known fact that every separable Hilbert space, and
in particular L2(R), possesses an orthonormal basis. One of the major properties
of such sequences is that they provide a “decomposition” of the space. That is,
if {en} is an orthonormal basis for a Hilbert space H then every x ∈ H can be
written x =

∑

n〈x, en〉en. Unfortunately, orthonormal bases can often be difficult
to find or inconvenient to work with. For example, one orthonormal basis for
L2(R) is the sequence {ϕmn}, where

ϕmn(x) = e2πi(x−n)m χ[n,n+1)(x).

However, these functions are discontinuous, which can make the representation of
even smooth functions in L2(R) unpleasant.

Frames are an alternative to orthonormal bases. By giving up the requirements
of orthogonality and uniqueness of decomposition we allow much more freedom
in our choice of “basis vectors”, while still retaining the ability to decompose the
space. In Section 2 we define the notion of a frame and show that if {xn} is a
frame then every x ∈ H can be written x =

∑

n cnxn in a good way, i.e., the
scalars are computable, the series converges unconditionally, etc. The remainder
of the paper is devoted to finding frames for L2(R). These fall into two general
categories, which we call Weyl-Heisenberg and affine frames.

W-H frames, studied in Section 3, are similar in structure to the orthonor-
mal basis {ϕmn} given above. In particular, note that ϕmn can be written
ϕmn = TnEmϕ, where ϕ = χ[0,1), Em denotes multiplication by e2πimx, and
Tn denotes translation by n. In the same way, W-H frames are composed of dis-
crete modulates and translates of a single function, called the “mother wavelet”.
Unlike orthonormal bases, we show that it is possible to find W-H frames whose
mother wavelet is smooth. Moreover, in Section 4 we indicate that if a W-H frame
should happen to form a basis then the mother wavelet is either not smooth or
does not decay quickly. Section 4 is devoted to the Zak transform, also known
as the Weil-Brezin map [AT], which is an important tool in the analysis of W-H
frames.

In Section 5 we turn to a fundamentally different method of constructing frames
for L2(R). These “affine frames” are obtained by taking discrete translates and
dilates of the mother wavelet. A well-known example is the standard Haar system,
whose mother wavelet is not smooth. After stating some of the basic results about
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affine frames, we briefly mention the Meyer wavelet. This is a C∞ function with
compactly supported Fourier transform, and the affine frame it generates forms
an orthonormal basis for L2(R). Comparing this with our above remarks on W-H
frames and bases, we see that there is a great deal of difference between the two
types of frames.

Although we omit or only sketch most of the proofs in this article, they can
all be found in [HW], along with a great deal of additional material, such as the
relationship of W-H and affine frames to continuous representations of L2(R). I
would like to thank David Walnut, my colleague at the University of Maryland
and Mitre Corp., for permission to use some of the material from [HW] in this
article. Another supurb reference on the subject of W-H and affine frames is [D1],
from which many of the results quoted in this paper were taken.

1. Notation. We write R for the real line thought of as the time axis, and R̂
for its dual group, the real line throught of as the frequency axis. All sequences
and series with undefined limits are to be taken over Z, the set of integers. L2(R)
is the Hilbert space of all complex-valued, square-integrable functions f on R,

normed by ‖f‖2 =
(∫

|f(x)|2 dx
)1/2

. The inner product of f , g ∈ L2(R) is

〈f, g〉 =
∫

f(x) g(x)dx. The Fourier transform of an integrable f is

f̂(γ) =

∫

R

f(x) e−2πiγx dx, for γ ∈ R̂.

Given a function f we define

Translation: Taf(x) = f(x− a), for a ∈ R;
Modulation: Eaf(x) = e2πiaxf(x), for a ∈ R;
Dilation: Daf(x) = |a|−1/2f(x/a), for a ∈ R\{0}.

Each of these is a unitary operator from  L2 onto itself, i.e., a linear bijective isom-
etry. We also use the symbol Ea by itself to refer to the exponential function,
i.e., Ea(x) = e2πiax.

2. Frames in Hilbert Spaces.

Definition 2.1 [DS]. A sequence {xn} in a Hilbert space H is a frame if there
exist numbers A,B > 0 such that for all x ∈ H we have

A‖x‖2 ≤
∑

n

|〈x, xn〉|
2 ≤ B‖x‖2.

The numbers A,B are called the frame bounds. The frame is tight if A = B.
The frame is exact if it ceases to be a frame whenever any single element is deleted
from the sequence.

Frames were first introduced in 1952 by Duffin and Schaeffer in connection with
nonharmonic Fourier series [DS].

Since
∑

|〈x, xn〉|
2 is a series of positive real numbers it converges absolutely,

hence unconditionally. That is, every rearrangement of the sum also converges,
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and converges to the same value. Therefore every rearrangement of a frame is also
a frame, and all sums involving frames actually converge unconditionally.

If follows immediately from the definition that all frames are complete That
is, the only x ∈ H orthogonal to every xn is x = 0, or equivalently, the set of
finite linear combinations of the xn is dense in H. The following theorem shows
that they also provide a decomposition of the space similar to that of orthonormal
bases. Given operators S, T :H → H we write S ≤ T if 〈Sx, x〉 ≤ 〈Tx, x〉 for all
x ∈ H, and we denote by I the identity map on H, i.e., Ix = x for all x ∈ H.

Theorem 2.2 [DS]. Given a sequence {xn} in a Hilbert space H, the following
two statements are equivalent:

(1) {xn} is a frame with bounds A,B.
(2) Sx =

∑

〈x, xn〉xn is a bounded linear operator with AI ≤ S ≤ BI, called
the frame operator for {xn}.

Proof. (2) ⇒ (1). Follors from 〈Ix, x〉 = ‖x‖2 and 〈Sx, x〉 =
∑

|〈x, xn〉|
2.

(1) ⇒ (2). S is well-defined and continuous since

‖Sx‖2 = sup
‖y‖=1

|〈Sx, y〉|2

= sup
‖y‖=1

∣

∣

∣

∣

∑

n

〈x, xn〉〈xn, y〉

∣

∣

∣

∣

2

≤ sup
‖y‖=1

(

∑

n

|〈x, xn〉|
2

)(

∑

n

|〈xn, y〉|
2

)

≤ sup
‖y‖=1

B‖x‖2 · B‖y‖2

= B2‖x‖2.

The relations AI ≤ S ≤ BI then follow immediately from the definition of
frames. �

We say that a mapping U :H → H is invertible, or a topological isomor-

phism, if U is linear, bijective, continuous, and U−1 is continuous.

Corollary 2.3 [DS].

(1) S is invertible and B−1I ≤ S−1 ≤ A−1I.
(2) {S−1xn} is a frame with bounds 1/B, 1/A, called the dual frame of {xn}.
(3) Every x ∈ H can be written

x =
∑

〈x, S−1xn〉xn =
∑

〈x, xn〉S
−1xn.

Proof. 1. Since AI ≤ S ≤ BI we have ‖I − 1
B
S‖ ≤ ‖I − A

B
S‖ = B−A

B
< 1.

Elementary Hilbert space results therefore imply that 1
B
S is invertible, so S itself

must be invertible. Since S−1 is a positive operator and commutes with both I
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and S, we can multiply through by S−1 in the equation AI ≤ S ≤ BI to obtain
B−1I ≤ S−1 ≤ A−1I.

2. Since S−1 is positive it is self-adjoint. Therefore,

∑

n

〈x, S−1xn〉S
−1xn =

∑

n

〈S−1x, xn〉S
−1xn

= S−1

(

∑

n

〈S−1x, xn〉xn

)

= S−1S(S−1x)

= S−1x.

The result then follows from the fact that B−1I ≤ S−1 ≤ A−1I and Theorem 2.2
part 2.

3. Simply expand x = S(S−1x) and x = S−1(Sx). �

Corollary 2.4. If {xn} is a tight frame, i.e., if A = B, then

(1) S = AI.
(2) S−1 = A−1I.
(3) Every x ∈ H can be written x = A−1

∑

〈x, xn〉xn.

Proposition 2.5 [DS]. Given a frame {xn} and given x ∈ H define an =
〈x, S−1xn〉, so x =

∑

anxn. If it is possible to find other scalars cn such that
x =

∑

cnxn then we must have

∑

|cn|
2 =

∑

|an|
2 +

∑

|an − cn|
2.

Proof. Follows from
∑

|an|
2 = 〈x, S−1x〉 =

∑

cnan. �

Theorem 2.6 [DS]. The removal of a vector from a frame leaves either a frame
or an incomplete set. In fact,

〈xm, S
−1xm〉 6= 1 ⇒ {xn}n6=m is a frame;

〈xm, S
−1xm〉 = 1 ⇒ {xn}n6=m is incomplete.

Proof. Fix m, and define an = 〈xm, S
−1xn〉 = 〈S−1xm, xn〉. We know that xm =

∑

anxn, but we also have xm =
∑

cnxn where cm = 1 and cn = 0 for n 6= m.
Using Proposition 2.5 we find that

∑

n6=m

|an|
2 =

1 − |am|2 − |am − 1|2

2
< ∞.

Suppose now that am = 1. Then
∑

n6=m |an|
2 = 0, so an = 〈S−1xm, xn〉 = 0

for n 6= m. That is, S−1xm is orthogonal to xn for every n 6= m. But S−1xm 6= 0
since 〈S−1xm, xm〉 = am = 1 6= 0. Therefore {xn}n6=m is incomplete in this case.
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On the other hand, suppose am 6= 1. Then xm = 1
1−am

∑

n6=m anxn, so for
x ∈ H we have

|〈x, xm〉|2 =

∣

∣

∣

∣

1

1 − am

∑

n6=m

an〈x, xn〉

∣

∣

∣

∣

2

≤
1

|1 − am|2

(

∑

n6=m

|an|
2

)(

|〈x, xn〉|
2

)

.

Therefore,

∑

n

|〈x, xn〉|
2 = |〈x, xm〉|2 +

∑

n6=m

|〈x, xn〉|
2 ≤ C

∑

n6=m

|〈x, xn〉|
2,

where C = 1 + |1 − am|−2
∑

n6=m |an|
2. It follows immediately that {xn}n6=m is a

frame with bounds A/C,B. �

Corollary 2.7 [DS]. If {xn} is an exact frame then {xn} and {S−1xn} are
biorthogonal, i.e.,

〈xm, S
−1xn〉 = δmn =

{

1, if m = n;

0, if m 6= n.

Definition 2.8. A sequence {ϕn} in a Hilbert space H is a basis for H if for
every x ∈ H there exist unique scalars cn such that

x =
∑

cnϕn.

The basis is bounded if 0 < inf ‖ϕn‖ ≤ sup ‖ϕn‖ < ∞. The basis is uncondi-

tional if the series
∑

cnϕn converges unconditionally, that is, every permutation
of the series converges.

In finite-dimensional spaces, a series converges unconditionally if and only if
it converges absolutely. In infinite-dimensional spaces, absolute convergence still
implies unconditional convergence but the reverse need not be true. In Hilbert
spaces, all bounded unconditional bases are equivalent to orthonormal bases.
That is, if {ϕn} is a bounded unconditional basis, then there is an orthonormal
basis {en} and a topological isomorphism U :H → H such that ϕn = Uen for all
n (see [Y]).

It is easy to see that inexact frames are not bases. However, we do have the
following characterization of exact frames.

Theorem 2.9 [DS; Y]. A sequence {xn} in a Hilbert space H is an exact frame
for H if and only if it is a bounded unconditional basis for H.

Proof [H]. ⇒. Assume {xn} is an exact frame with bounds A,B. Then {xn} and
{S−1xn} are biorthogonal, so for m fixed we have

A ‖S−1xm‖2 ≤
∑

n

|〈S−1xm, xn〉|
2 = |〈S−1xm, xm〉|2 ≤ ‖S−1xm‖2‖xm‖2.
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Therefore ‖xm‖2 ≥ A. Also,

‖xm‖4 = |〈xm, xm〉|2 ≤
∑

n

|〈xm, xn〉|
2 ≤ B ‖xm‖2,

so ‖xm‖2 ≤ B. Thus the sequence {xn} is bounded in norm. By Corollary 2.3,
x =

∑

〈x, S−1xn〉xn for all x ∈ H, and the biorthogonality of {xn} and {S−1xn}
implies that this representation is unique, so {xn} is a basis for H. Since every
permutation of a frame is also a frame, we conclude that the basis is unconditional.

⇐. Assume {xn} is a bounded unconditional basis for H. Then there is an
orthonormal basis {en} and a topological isomorphism U :H → H such that Uen =
xn for all n. Given x ∈ H we therefore have

∑

n

|〈x, xn〉|
2 =

∑

n

|〈x,Uen〉|
2 =

∑

n

|〈U∗x, en〉|
2 = ‖U∗x‖2.

But
‖x‖

‖U∗−1‖
≤ ‖U∗x‖ ≤ ‖U∗‖ ‖x‖,

so {xn} forms a frame. It is clearly exact since the removal of any vector from a
basis leaves an incomplete set. �

3. Weyl-Heisenberg Frames.

Definition 3.1. Given g ∈  L2 and a, b > 0, we say that (g, a, b) generates a

W-H frame for L2(R) if {TnaEmbg}m,n∈Z is a frame for L2(R). The function g
is referred to as the mother wavelet. Together, the numbers a, b are the frame

parameters. Individually, a is the shift parameter and b is the modulation

parameter.

Theorem 3.2 [DGM]. Assume g ∈ L2(R) and a, b > 0 satisfy:

(1) There exist constants A,B such that

0 < A = ess inf
x∈R

∑

n

|g(x− na)|2 ≤ ess sup
x∈R

∑

n

|g(x− na)|2 = B < ∞;

(2) g has compact support, with supp(g) ⊂ I ⊂ R, where I is some interval
of length 1/b.

Then (g, a, b) generates a W-H frame for L2(R) with frame bounds b−1A, b−1B.

Proof. Fix n, and observe that the function f ·Tnag is supported in In = I+na =
{x+ na : x ∈ I}, which is an interval of length 1/b. From the Plancherel formula
for Fourier series, we therefore have

∑

n

∑

m

|〈f, TnaEmbg〉|
2 =

∑

n

∑

m

|〈f · Tnag,Emb〉|
2

=
∑

n

b−1

∫

In

|f(x)|2 |g(x− na)|2 dx

= b−1

∫

R

|f(x)|2
∑

n

|g(x− na)|2 dx,
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from which the result follows. �

By taking the functions f to be analyzed which have compact support, one can
prove:

Proposition 3.3 [D1]. Whether g has compact support or not, it is necessary
that condition (1) of Theorem 3.2 hold in order that {TnaEmbg} make a frame.

Remark 3.4. It is easy to see that if g satisfies condition (2) of Theorem 3.2 and
if ab > 1 then

∑

n |g(x− na)|2 is not bounded below, so that g cannot generate a
frame. In fact, the set {TnaEmbg} is not even complete, since ∪n supp(Tnag) does
not cover R. This is a simple illustration of a more general phenomenon discussed
in Section 4, namely that if ab > 1 then {TnaEmbg} can never be complete in
L2(R) for any g ∈ L2(R).

Proposition 3.5 [D1]. If (g, a, b) generates a W-H frame for L2(R), then (ĝ, b, a)

generates a W-H frame for L2(R̂).

Proof. Follows immediately from (TnaEmbg)∧ = E−naT−mbĝ. �

Remark 3.6. It follows from Propositions 3.3 and 3.5 that if (g, a, b) generates a
frame for L2(R) then both g and ĝ are bounded functions.

Theorem 3.2 used Fourier series arguments to derive conditions under which a
compactly supported function g could be a mother wavelet. If g does not have
compact support then this argument breaks down. It turns out, however, that one
can perform a similar calculation if g is not compactly supported.

Theorem 3.7 [D1]. Assume g ∈ L2(R) and a > 0 satisfy:

(1) There exist constants A,B such that

0 < A = ess inf
x∈R

∑

n

|g(x− na)|2 ≤ ess sup
x∈R

∑

n

|g(x− na)|2 = B < ∞;

(2) lim
b→0

∑

k 6=0

β(k/b) = 0, where

β(s) = ess sup
x∈R

∑

n

|g(x− na)| |g(x− s− na)|.

Then there exists a number b0 > 0 such that (g, a, b) generates a W-H frame for
L2(R) for each 0 < b < b0.

Remark 3.8. Condition (2) of Theorem 3.7 is purely a decay condition on g and
is satisfied, for example, if

|g(x)| ≤ C(1 + |x|2)−1
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for some C <∞ and all x ∈ R.

Example 3.9. Given any a, b > 0 with ab < 1 it is easy to construct a smooth
mother wavelet which generates a W-H frame for those parameters [D1; DGM].
For example, assume 1/2b ≤ a < 1/b and set λ = 1/b − a. Since λ > 0 we can
define

g(x) = a−1/2



































0, x ≤ 0;

v(x/λ), 0 ≤ x ≤ λ;

1, λ ≤ x ≤ a;
(

1 − v(x−a
λ

2
)1/2

, a ≤ x ≤ 1/b;

0, 1/b ≤ x;

where v ∈ C∞(R) is any function such that v(x) = 0 if x ≤ 0, v(x) = 1 if
x ≥ 1, and 0 < v(x) < 1 if 0 < x < 1. It is easy to see then that g ∈ C∞(R),
‖g‖2 = 1, supp(g) ⊂ [0, 1/b], and

∑

|g(x− na)|2 ≡ 1/a. It therefore follows from
Theorem 3.2 that g generates a tight W-H frame with frame bound A = B = 1

ab .

4. The Zak transform. The Zak transform, also known as the Weil-Brezin
map, has been used explicitly and implicitly in many mathematical and signal
processing articles. Its history may even extend as far back as Gauss. Zak studied
this operator beginning in the 1960s, in connection with solid state physics [Z].

Definition 4.1. The Zak transform of a function f is (formally)

Zf(t, ω) = a1/2
∑

k∈Z

f(ta− ka) e−2πikω for t ∈ R, ω ∈ R̂,

where a ∈ R\{0} is fixed.

Zf is defined pointwise at least for continuous functions with compact support.
Formally, we have the quasiperiodicity relations

Zf(t+ 1, ω) = e−2πiωZf(t, ω)

Zf(t, ω + 1) = Zf(t, ω)

Therefore, the values of Zf(t, ω) for (t, ω) ∈ R× R̂ are completely determined by
its values in the unit square, i.e., for (t, ω) ∈ Q = [0, 1) × [0, 1).

Definition 4.2. We define L2(Q) to be the Hilbert space

L2(Q) =
{

F : ‖F‖2 =
(

∫ 1

0

∫ 1

0

|F (t, ω)|2 dω dt
)1/2

<∞
}

.

We denote by E(m,n) the two-dimensional exponentialE(m,n)(t, ω) = e2πimte2πinω.
Recall that the set of two-dimensional exponentials {E(m,n)}m,n∈Z forms an or-

thonormal basis for L2(Q).

Theorem 4.3 [J]. The Zak transform is a unitary map of L2(R) onto L2(Q), i.e.,
Z is a linear bijective isometry.

In general, if Zf is continuous on Q it need not be true that Zf is continuous
on R × R̂. For example, consider the function f such that Zf is identically 1 on
Q. Moreover, one can prove the following.



155

Theorem 4.4 [J]. If f ∈ L2(R) is such that Zf is continuous on R× R̂ then Zf
has a zero in Q.

The unitary nature of the Zak transform allows us to translate conditions on
frames for L2(R) into conditions for frames for L2(Q), where things are frequently
easier to deal with.

Proposition 4.5. Given functions gn ∈ L2(R). Then {gn} is complete/a frame/
an exact frame/an orthonormal basis for L2(R) if and only if {Zgn} is complete/a
frame/an exact frame/an orthonormal basis for L2(Q).

The Zak transform is particularly good for analyzing W-H frames when ab = 1.

Theorem 4.6 [J]. Assume g ∈ L2(R) and a, b > 0 with ab = 1. Then

Z(TnaEmbg) = E(m,n)Zg.

Corollary 4.7 [D1; B]. Given g ∈ L2(R) and a, b > 0 with ab = 1. Then
{TnaEmbg} is a complete set in L2(R) if and only if Zg 6= 0 a.e. in Q.

Corollary 4.8 [D1; B]. Given g ∈ L2(R) and a, b > 0 with ab = 1. Then the
following statements are equivalent, i.e., each implies the other.

(1) 0 < A ≤ |Zg(t, ω)|2 ≤ B <∞ a.e. in Q.
(2) {TnaEmbg}m,n∈Z is a frame for L2(R) with frame bounds A,B.
(3) {TnaEmbg}m,n∈Z is an exact frame for L2(R) with frame bounds A,B.

Proof. 1 ⇒ 2. Assume 1 holds. By Proposition 4.5 and Theorem 4.6, it suffices to
show that {E(m,n)Zg} is a frame for L2(Q) with frame bounds A,B. So, choose

any F ∈ L2(Q). As Zg is a bounded function, we have that F · Zg ∈ L2(Q). But
{E(m,n)} is an orthonormal basis for L2(Q), so we have

∑

m,n

|〈F,E(m,n)Zg〉|
2 =

∑

m,n

|〈F · Zg,E(m,n)〉|
2 = ‖F · Zg‖2

2,

from which the result follows.

2 ⇒ 1. Assume 2 holds. By Proposition 4.5 and Theorem 4.6, {E(m,n)Zg}

is therefore a frame for L2(Q) with frame bounds A,B. But {E(m,n)} is an or-

thonormal basis for L2(Q), so
∑

|〈F,E(m,n)Zg〉|
2 = ‖F · Zg‖2

2, as above. Thus

A‖F‖2
2 ≤ ‖F · Zg‖2

2 ≤ B‖F‖2
2 for all F ∈ L2(Q), which implies easily that

A ≤ |Zg|2 ≤ B a.e.

2 ⇒ 3. Assume 2 holds, so {E(m,n)Zg} is a frame for L2(Q). By 1 ⇔ 2 we know
Zg is bounded above and below. Therefore, the mapping U defined by UF = F ·Zg
is a topological isomorphism of L2(Q) onto itself. Recall from Section 2 that
exact frames are bounded unconditional bases, and that bounded unconditional
bases are equivalent to orthonormal bases. Since {E(m,n)Zg} is obtained from
the orthonormal basis {E(m,n)} by the topological isomorphism U , we see that
{E(m,n)Zg} is a bounded unconditional basis, hence an exact frame. �
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Corollary 4.9 [D1; B]. Given g ∈ L2(R) and a, b > 0 with ab = 1. Then
{TnaEmbg} is an orthonormal basis for L2(R) if and only if |Zg(t, ω) = 1 a.e.
in Q.

The preceding results give us hope that we can find good orthonormal bases for
L2(R), since all we need do is find some nice function whose Zak transform has
absolute value 1. Let us look at some examples.

Example 4.10 [DGM; BGZ]. The Zak transform of the Gaussian function g(x) =

e−πx2

is continuous and has a single zero in Q. Therefore the Weyl–Heisenberg
states {TnaEmbg}m,n∈Z for ab = 1 are complete in L2(R) but do not form a
frame. However, one can show that g does generate a frame for other values of ab,
in particular, for ab = 1/2.

Example 4.11. Let a = b = 1 and g = χ[0,1). The Zak transform of g is
Zg(t, ω) ≡ 1 for (t, ω) ∈ Q. Therefore g generates a W-H frame with A = B = 1.
In fact, this W-H frame is an orthonormal basis for L2(R) by Corollary 4.9.

This last example is a bit unpleasant since g is not smooth. This will introduce
discontinuities even when analyzing functions which are smooth. The following
theorem, due to Balian, Coifman, and Semmes, shows that something like this
always happens when ab = 1, namely, either g is not smooth or it does not decay
very fast.

Theorem 4.12 [D1]. Given g ∈ L2(R) and a, b > 0 with ab = 1. If (g, a, b)
generates a W-H frame, then either xg(x) /∈ L2(R) or g′ /∈ L2(R).

Thus, W-H frames with ab = 1 are bases for L2(R) but are not very nice. It
can be shown that all W-H frames with ab < 1 are inexact, and we indicate below
that it is impossible to construct a W-H frame when ab > 1. Thus ab = 1 is a
sort of “critical value” for W-H frames. Daubechies explains this as a “Nyquist
density”, as occurs in information processing [D1].

For the case ab = N > 1, an easy calculation gives Z(TnaEmbg) = E(mN,n)Zg.
But {E(mN,n)} is only a part of the orthonormal basis {E(m,n)}, so it is easy to

prove that E(mN,n)Zg is incomplete in L2(Q) no matter what g ∈ L2(R) is chosen.
The proof can be adapted to cover the case ab > 1 and rational. For ab > 1 and
irrational, the result follows by computing the coupling constant of a certain Von
Neumann algebra [D1; R].

5. Affine Frames.

Definition 5.1. We define

H2
+ = {f ∈ L2(R) : supp(f̂) ⊂ [0,∞)},

H2
− = {f ∈ L2(R) : supp(f̂) ⊂ (−∞, 0]}.

These are Hilbert spaces, with the same inner products as the L2(R) inner product,
and with norms

‖f‖H2
+

=

(
∫ ∞

0

|f̂(γ)|2 dγ

)1/2

and ‖f‖H2
−

=

(
∫ 0

−∞

|f̂(γ)|2 dγ

)1/2

.
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Moreover, H2
+(R) and H2

−(R) are closed subspaces of the Hilbert space L2(R)
and each is the orthogonal complement of the other.

Definition 5.2. Given g ∈ H2
+(R), a > 1, and b > 0, we say that (g, a, b)

generates an affine frame for H2
+(R) if {DanTmbg}m,n∈Z is a frame for H2

+(R).
The function g is referred to as the mother wavelet. The numbers a, b together
are the frame parameters, a being the dilation parameter, and b the shift

parameter.

We make similar definitions for affine frames for H2
−(R) and L2(R), and remark

that it is sometimes necessary to take two mother wavelets in order to form a frame
for L2(R) (cf. Theorem 5.4).

Theorem 5.3 [DGM]. Let g ∈ L2(R) be such that supp(ĝ) ⊂ [l, L], where 0 ≤
l < L <∞, and let a > 1 and b > 0 be such that:

(1) There exist constants A,B such that

0 < A = ess inf
γ≥0

∑

n

|ĝ(anγ)|2 ≤ ess sup
γ≥0

∑

n

|ĝ(anγ)|2 = B < ∞;

(2) (L− l) ≤ 1/b.

Then {DanTmbg} is a frame for H2
+(R) with bounds b−1A, b−1B.

Proof. Fix n ∈ Z. Then by condition (2), the function Dan f̂ · ¯̂g is supported in
I = [l, l + 1/b], which is an interval of length 1/b. The Plancherel formula for
Fourier series therefore implies that

∑

n

∑

m

|〈f,DanTmbg〉|
2 =

∑

n

∑

m

|〈Dan f̂ · ¯̂g,E−mb〉|
2

=
∑

n

b−1

∫

I

|Dan f̂(γ) · ĝ(γ)|2 dγ

=
∑

n

b−1

∫ ∞

0

|f̂(γ)|2 |ĝ(anγ)|2 dγ

= b−1

∫ ∞

0

|f̂(γ)|2 ·
∑

n

|ĝ(anγ)|2 dγ,

from which the result follows. �

A similar theorem can be formulated for H2
−(R). It is easy to see that if we

combine a frmae for H2
+(R) with one for H2

−(R) then we obtain a frame for L2(R).

Theorem 5.4. Let g1, g2 ∈ L2(R) satisfy supp(ĝ1) ⊂ [−L,−l] and supp(ĝ2)
⊂ [l, L], where 0 ≤ l < L <∞, and let a > 1, b > 0 be such that:

(1) There exist constants A,B such that

0 < A = min

{

ess inf
γ≤0

∑

n

|ĝ1(anγ)|2, ess inf
γ≥0

∑

n

|ĝ2(anγ)|2
}

≤ max

{

ess sup
γ≤0

∑

n

|ĝ1(anγ)|2, ess sup
γ≥0

∑

n

|ĝ2(anγ)|2
}

= B < ∞;

(2) (L− l) ≤ 1/b.
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Then the collection of functions {DanTmbg1,DanTmbg2} is a frame for L2(R) with
bounds b−1A, b−1B.

In analogy with Theorem 3.7, the following theorem gives a condition on g so
that (g, a, b) generates an affine frame for L2(R) for some frame parameters. In
particular, g need not have a compactly supported Fourier transform. Note that
unlike Thoerem 5.4, this theorem requires only one mother wavelet.

Theorem 5.5 [D1]. Assume g ∈ L2(R) and a > 1 satisfy:

(1) There exist numbers A,B such that

0 < A = ess inf
γ∈R

∑

n

|ĝ(anγ)|2 ≤ ess sup
γ∈R

∑

n

|ĝ(anγ)|2 = B < ∞;

(2) lim
b→0

∑

k 6=0

β(k/b)1/2β(−k/b)1/2 = 0, where

β(s) = ess sup
|γ|∈[1,a]

∑

n

|ĝ(anγ)| |ĝ(anγ − s)|.

Then there exists a number b0 > 0 such that {DanTmbg} is a frame for L2(R) for
each 0 < b < b0.

When a = 2 an improved version of Theorem 5.5 holds in which the function β
is replaced by a new function β1 which takes into account possible cancellations
which may arise from the phase portion of ĝ and which are lost in the function
β. This improved theorem is especially useful in analyzing the Meyer wavelet
(described below). The theorem is due to Tchamitchian.

Theorem 5.6 [D1]. Let g ∈ L2(R) and a = 2 satisfy the hypotheses of Theo-
rem 5.5, and assume b > 0. If {D2nTmbg} is a frame for L2(R) with frame bounds
A′, B′ then

A′ ≥ b−1

(

A − 2

∞
∑

l=0

β1( 2l+1
b )1/2β1(− 2l+1

b )1/2

)

and

B′ ≤ b−1

(

B + 2

∞
∑

l=0

β1( 2l+1
b )1/2β1(− 2l+1

b )1/2

)

,

where

β1(s) = ess sup
γ∈R̂

∑

m

∣

∣

∣

∣

∑

j≥0

ĝ(2m+jγ) ¯̂g
(

2j(2mγ + s)
)

∣

∣

∣

∣

and A,B are as in Theorem 5.5.

Example 5.7. Let g1 = χ(−2,−1] and g2 = χ[1,2), and take a = 2 and b = 1.

Then {D2nTmg1,D2nTmg2} is a tight affine frame for L2(R), and in fact is an
orthonormal basis for L2(R). Note, however, that the elements of this orthonormal
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basis are not smooth. In the next example we discuss the Meyer wavelet, which
is a C∞ function that generates an affine orthonormal basis for L2(R).

As we saw in Section 4, a W-H frame forms a basis for L2(R) if and only if
ab = 1. Moreover, W–H frames for this critical value are composed of functions
which are either not smooth or do not decay quickly. Y. Meyer showed that a very
different situation holds for the affine case when he exhibited a C∞ function with
compactly supported Fourier transform which generates an affine orthonormal
basis for L2(R).

Definition 5.8 [D2]. The Meyer wavelet is the function ψ ∈ L2(R) defined
by:

ψ̂(γ) = eiγ/2ω(|γ|),

where

ω(γ) =



















0, γ ≤ 1/3;

sin π
2
v(3γ − 1), 1/3 ≤ γ ≤ 2/3;

cos π
2
v( 3γ

2
− 1), 2/3 ≤ γ ≤ 4/3;

0, γ ≥ 4/3;

and v ∈ C∞(R̂) is such that v(γ) = 0 for γ ≤ 0 and γ ≥ 1, 0 ≤ v(γ) ≤ 1 for
γ ∈ [0, 1], and v(γ) + v(1 − γ) = 1 for γ ∈ [0, 1].

The last condition on v is crucial in showing that ψ generates an orthonormal
basis for L2(R). Note that ψ̂ is compactly supported and lies in both the negative
and positive portions of the real line. Therefore, we should only need dilations
and translations of ψ in order to form a frame for L2(R), not two functions ψ1,
ψ2 as in Theorem 5.4 or Example 5.7.

Lemma 5.9. Let ψ be as above, and let β1 be as in Theorem 5.6. Then

(1) ‖ψ‖2 = 1.

(2)
∑

n |ψ̂(2nγ)|2 ≡ 1.
(3) β1(k) = 0 for every odd k ∈ Z.

From Theorem 5.6 we therefore have that ψ generates a tight affine frame
for L2(R) for the parameters a = 2, b = 1. As pointed out before, ψ actually
generates an orthonormal basis for L2(R). Meyer, Lemarie, Daubechies, et al.,
have developed the concept of “multiscale analysis” to understand more fully the
phenomena exhibited by the Meyer wavelet [D2; LM].
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