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ABSTRACT

This paper investigates the emerging notion of multi-
wavelets in the context of multirate filter banks, and
applies a multiwavelet system to image coding. Multi-
wavelets are of interest because their constituent filters
can be simultaneously symmetric and orthogonal (this
combination is impossible for 2-band PR-QMFs), and
because one can obtain higher orders of approximation
(more vanishing wavelet moments) for a given filter
length. We develop symmetric extension methods for
finite-length signals under multiwavelet filtering. Tech-
niques are then presented for pre- and post-processing
one-dimensional signals in order to effectively exploit
multiwavelet structures. Finally, we employ these new
tools in a transform coding system and compare their
performance with Daubechies’ scalar wavelets.

I. INTRODUCTION

Wavelets as a cascade of multirate filter banks pro-
vide a multiresolution decomposition. Discrete-time
FIR filters lead to continuous-time basis functions.
Such wavelet decompositions are especially effective for
transform-based image coding because of their corre-
spondence with models of human visual perception.
Image compression systems work best with symmetric
filters, which eliminate artifacting due to image bound-
aries. However, nontrivial symmetric 2-band orthogo-
nal wavelets do not exist. In order to obtain symmetry
we can choose among biorthogonal filters {1, 12], many-
channel filters, and multiwavelets.

Multiwavelets — systems with two or more scaling
functions spanning the “lowpass” space — offer advan-
tages of short support, symmetry, and orthogonality.
In the paragraphs to follow we develop new meth-
ods of symmetric extension and signal preprocessing
which enable one to use a multiwavelet filter bank in a
transform-based image coder. While block filter banks
have been discussed in the past [4], issues of symmet-
ric extension and filter design have not previously been
addressed. Furthermore, the use of multiwavelet filters
in a cascade algorithm leads to a novel pre- and post-
processing method for block filter banks, based on the
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sampling/interpolation theory of wavelets. Finally, we
apply multiwavelets to the compression of images.

II. MULTIWAVELETS AND FILTER BANKS

A multiwavelet filter bank [10] can be thought of as
an M-channel filter bank with filter “taps” that are
N x N matrices. In this paper, we will be working with
M = N = 2. Our principal example, enumerated in
Table 1, is the 4-coeflicient symmetric multiwavelet fil-
ter bank whose lowpass filter was reported in [5]. This
filter is given by four 2 x 2 matrices c[k]. Unlike a
scalar 2-band paraunitary filter bank, the correspond-
ing highpass filter (specified by four 2 x 2 matrices d[k])
cannot be obtained simply as an “alternating flip” of
the lowpass filter; the d[k] must be designed [10]. The
resulting 2-channel, 2 x 2 matrix filter bank operates on
two input data streams, filtering them into four output
streams, each of which is downsampled by a factor of 2.
This is shown in Figure 1. Each row of the multifilter is
a combination of two ordinary filters, one operating on
the first data stream and the other operating on the
second. For example, the first lowpass multiwavelet
filter in Table 1 operates as ¢go[k] on the first input
stream and cg,;[k] on the second.
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Figure 1: A multiwavelet filter bank, iterated once.

We ask that the matrix filter coeflicients satisfy the
orthogonality (“block-paraunitarity”) condition

> cfklelk — 2" = 250, . (1)
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In the time domain, filtering followed by downsam-

pling yields an infinite lowpass matrix with “double
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Each of the filter taps c[k] is a 2 x 2 matrix. The eigen-
values of the matrix L are critical for the transition
to wavelets — if L has 1 as an eigenvalue, then there
is an associated 2-element vector of scaling functions
® = (¢1(t), #2(t)). This vector is the solution to the
matrix dilation equation
é1(t) | _ $1(2t — k)

- 2l stk B
These two functions (for the multiwavelet system of
Table 1) are shown in Figure 2. The span of integer
translates of these functions is the “lowpass” space V4,
the set of scale-limited signals [6]. Any continuous-
time function f(t) in V; can be expanded as a linear
combination

ity = Z%( n)+viagalt =n).  (3)

The superscript (0) denotes an expansion “at scale
level 0.7 f(t) is completely described by the sequences

{”1 n} {vz ) } Given such a pair of sequences, their

coarse approximation (component in V1) is computed
with the lowpass part of the multiwavelet filter bank:

]l

Analogously, the details wglz , wg ,)1 in Vg6V, are com-
puted with the highpass part d[k]

If the matrix L has eigenvalues 1, %, R -2—}_—1, then
polynomials of degree less than p belong to V5 [7]. This
holds for the multiwavelet filter of Table 1 with p =
2. All linear functions can be exactly reproduced by
integer translates of the scaling functions ¢; and ¢.

A. Symmetric estension

One advantage of a multiwavelet filter bank such as
that in Table 1 is the ability to combine orthogonal-
ity and linear-phase (symmetry). Linear-phase filter
banks are desirable for subband image coders [1, 9] be-
cause they enable symmetric extension of finite-length
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Figure 2: Multiwavelet scaling functions.

signals at image boundaries. Theories of symmetric
extension for 2-band and M-band subband coders have
been developed in [9, 2] and elsewhere (see [2]). How do
symmetric extension methods work for multiwavelets?

Recall the basic problem: given an input signal f(n)
with N samples and a linear-phase (symmetric or an-
tisymmetric) filter, how can we symmetrically extend
f before filtering and downsampling in a way that pre-
serves the nonexpansive nature of the transform? The
possibilities for such an extension have been -enumer-
ated in [2]. Depending on the parity of the input sig-
nal (even- or odd-length) and the parity and symme-
try of the filter, there is a specific non-expansive sym-
metric extension of both the input signal and the sub-
band outputs. For example, an even-length input sig-
nal passed through a symmetric lowpass filter should
be extended by repeating the first and last samples if
the filter length is even, and without any repeats if the
filter length is odd.

We develop non-expansive symmetric extension of
signals for multiwavelets. Each row of the multifil-
ter in Table 1 is a linear combination of two filters,
one for each input stream. One filter (applied to the
first stream) is of even length; the second is of odd
length. Thus we should extend the first stream us-
ing one method (e.g. repeating the first and last sam-
ples) and extend the second stream using another (e.g.
not repeating samples). Then, when resynthesizing
the input signal from the subband outputs, we must
symmetrize the subband data differently depending on
whether it is going into an even- or odd-length filter.

In particular, suppose we are given two input rows
(one of even length, the other of odd length)
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The application of the (linear-phase) synthesis mul-
tiwavelet filters now yields the symmetric extension
of the original signal. In this way we obtain a non-
expansive transform of finite-length input data which
behaves well at the boundaries under quantization.

III. ONE INPUT STREAM TO TWO STREAMS

Two data streams enter the multifilter. To create them
from an ordinary single-stream input of length IV, there
are at least three possibilities:

(1) Separate odd and even samples (in one dimension),
or use adjacent rows of the image (in two dimensions).
(i1) Repeat the input stream to produce two length ~
streams.

(711) Create a consistent approximation based on equa-
tion (2) that yields two length N/2 streams, and a “de-
approximation” that returns a length N stream.

Method (2) constrains the design of the multifilter
and, in the case of images, introduces nontrivial two-
dimensional processing. This method has yet to yield
good results. Method (u2) is convenient to implement
and consistent with the design. Its drawback is the
extra calculation — we process two full-length signals
before returning to one. Nevertheless, our experiments
on one-dimensional signals were encouraging (see Fig-
ure 3). Accounting for the oversampled representation,
and compressing twice as much, the error was compa-
rable to compression using the D4 wavelet [3].

Method (#:7) maintains a critically sampled repre-
sentation. The multifilter processes two N/2-point
data streams {vy,»} and {vs,n} using an approximation
method suggested by Geronimo and described next. It
follows the underlying wavelet decomposition and its
sampling/interpolation theory. Examination of Figure
2 shows that the multiwavelet scaling function ¢ (%)
is zero at every integer. The scaling function @,(t) is
nonzero at t = 1 and vanishes at all other integers.
Taking the samples of a signal f[n] to be the values of

ORIGINAL SIGNAL, ONE SAMPLE
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MULTIWAVELET RECONSTRUCTED SIGNAL, 10:1, 50 TRIALS, PSNR=30.85

o
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Figure 3: Method (¢z) applied to 1-D compression.

a continuous-time function f(¢) at the half-integers, we
can determine the coefficients vi , from the behavior
of the functions ¢, (t) at the integers and equation (3):

_ $2(1)f(2n—1)=92(1/2)(f(2n)+f({2n—2

Vin = 1
_ 1n) Pn )
U?,n — %.(1)"
To resynthesize the signal on output we invert (5):
f(2n) = éa(l)van (6)
Fon—1) = 62(1/2)(va,n + va,n-1) + $1(1/2)v1,n.

Given any f(t) € Vo, the approximation (5), filter-
ing, and de-approximation (6) will produce only low-
pass output; zero in the highpass subband. For exam-
ple, flt) =1€V gives vy, =1 and vy, = V2, which
is the eigenvalue 1 eigenvector of the matrix L7.

If the input signal f(n) has odd length N = 2m+1,
and we extend it symmetrically as

- f(1), £0), F(1), £(2), .-, FIN=1), F(N), F(N=1),

then the approximation (5) yields two rows with
the symmetry (4). Thus the approximation/de-
approximation method is compatible with symmetric
extension for multiwavelet filtering, at least for odd
length inputs. If the input signal is even length, we can
repeat the last value to make it odd length; this data
expansion is negligible for subsequent subband coding.

IV. A MULTIWAVELET IMAGE CODER

We now apply the multiwavelets to transform coding
of two-dimensional signals. The two-dimensional mul-
tiwavelet transform is formed as a tensor product of
two one-dimensional transforms. If the forward trans-
form just approximated, then filtered with downsam-
pling, a constant row f[n] = 1 would become two half-
length rows, one of them the constant 1 and the other
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the constant /2. To overcome this, we de-approzimate
the multiwavelet filter bank output before operating
in the vertical direction. Thus the multiwavelet trans-
form works on a one-dimensional signal as in Figure 4
to yield two half-rate outputs. This operation is per-
formed in each dimension, and iterated six times on
the lowpass output only [8, 13] to obtain the full mul-
tiwavelet decomposition of an image.

Figure 4: Approximation/de-approximaticn scheme for
computing the 2-dimensional multiwavelet transform.

Wavelets have proven themselves as transforms for
use in image coding [8, 13], because of their energy
compaction properties and correspondence with mod-
els of human vision. We used the 4-coefficient linear-
phase multiwavelet filter bank described above in an
image coder. After transforming the data with the
4-coefficient linear-phase multiwavelet filter bank de-
scribed above, we performed entropy-constrained uni-
form scalar quantization, followed by adaptive Huff-
man coding [13]. We used the same quantizer-coder
combination with a wavelet transform based on the
comparable-length Daubechies D4 scalar 2-band wave-
lets, and applied both coders tc a variety of natu-
ral images. Results are tabulated in Table 2. The
multiwavelet filter bank yielded comparable signal-to-
noise ratios, and produced less-objectionable artifacts
at edges, even in the interior of the image.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have applied multiwavelets as filter banks to data
compression. In doing so, we have developed sym-
metric extension algorithms for linear-phase multi-
wavelets, and a new method of applying block filter
banks to one- and two-dimensional signal processing
based on wavelet sampling theory {(approximation and
de-approximation). Finally, the multiwavelets com-
pared well with Daubechies wavelets for image cod-
ing. Future work will include new designs for multi-
wavelet filter banks with symmetry and higher orders
of approximation, and extensions of the sampling the-
ory approach to multiwavelet filtering.

Image Ratio | Multiwavelet | Daubechies 4

Lenna 16:1 31.8dB 32.3dB
32:1 29.4 dB 29.3 dB

nuke (NITF7) | 161 | 27.1dB 7.5 dB
32:1 23.8 dB 24.2 dB

[10]

(1]

[12]

[13]
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Table 2: Image Coding Results (pSNR)
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