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Abstract—Hyperfunctions in Rn are intuitively considered as sums of boundary values of holo-
morphic functions defined in infinitesimal wedges in Cn. Orthonormal multiwavelets, which are a
generalization of orthonormal single wavelets, generate a multiresolution analysis by means of sev-
eral scaling functions. Microlocal analysis is briefly reviewed and a multiwavelet system adapted to
microlocal filtering is proposed. A rough estimate of the microlocal content of functions or signals is
obtained from their multiwavelet expansions. A fast algorithm for multiwavelet microlocal filtering
is presented and several numerical examples are considered. c© 2001 Elsevier Science Ltd. All rights
reserved.

Keywords—Microlocal analysis, Filter, Multiwavelet, Analytic representation.

1. INTRODUCTION

The extraordinary development of wavelets in recent years have made them present in a large
part of our high-technology world [1]. Wavelets are being incorporated in engineering standards
for image and audio signal compression. One of the first standards based on wavelets is “wavelet
scalar quantization”, adopted by the U.S. Federal Bureau of Investigation (FBI) in 1997 to encode
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fingerprints. The forthcoming still-image compression standard known as JPEG2000 includes a
wavelet option and MPEG-4, the next video compression standard, will be entirely wavelet-
based. Wavelet-based high-compression modems will increase the usable bandwidth of electrical
signals over a telephone line by a factor of 250 from 4 kHz to 1 MHz. Developments in wavelets
have influenced many pure and applied mathematicians and scientists in such disparate fields as
numerical analysis, computer vision, human vision, turbulence, statistics, physics, and medicine.
This paper is an attempt to use wavelets in the study of hyperfunctions and their microlocal
analysis.

Intuitively, hyperfunctions, which were introduced by Sato [2] and extensively developed by the
Kyoto School of Mathematics, can be considered as sums of boundary values of holomorphic func-
tions defined in infinitesimal wedges. Hyperfunctions are powerful tools in several applications;
for example, vortex sheets in two-dimensional fluid dynamics are a realization of one-dimensional
hyperfunctions. Analytic continuation in domains of special forms plays a key role in the theory
of hyperfunctions. A simple example of a hyperfunction is the Dirac delta measure δ(x), which,
when applied to a continuous functions f(x), produces the value f(0),∫

R

f(x) δ(x) dx = f(0).

Since, in Schwartz’s theory of distributions [3], smooth testing functions of compact support
cannot be holomorphic functions, Sato used the Cauchy integral formula to define δ(x) applied
to a holomorphic function f(z) on an open set D ⊂ C. Assuming that 0 ∈ D and letting γ = ∂D

denote the boundary of D, we have

1
2πi

∮
γ

f(z)
z

dz = f(0).

In the limit as the path γ is shifted to −γ+ + γ−, as shown in Figure 1, this formula becomes

1
2πi

∮
γ

f(z)
z

dz =
∫ +∞

−∞

(
− 1

2πi

)(
1

x+ i0
− 1
x− i0

)
f(x) dx.

Figure 1. Shifting the path γ to −γ+ + γ−.

Thus,

δ(x) = − 1
2πi

(
1

x+ i0
− 1
x− i0

)
is defined as the limit of two holomorphic functions, one holomorphic in the upper half-plane,
and the other holomorphic in the lower half-plane.

The classical construction of an orthonormal wavelet basis begins with a single function, the
scaling function, which satisfies a particular functional equation known variously as refinement
equation, dilation equation, or two-scale difference equation. This scaling function determines a
multiresolution analysis for L2(Rn), which in turn determines a wavelet basis [4]. The construc-
tion of a multiwavelet basis is analogous, the difference being that several scaling functions are
used to generate the multiresolution analysis instead of a single scaling function. The correspond-
ing wavelet basis is then generated by several multiwavelets. One advantage of multiwavelets is
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that they can incorporate properties that a single wavelet cannot simultaneously possess, such as
orthogonality, symmetry, short support, and high approximation order. Such constructions have
shown potential in signal processing applications such as image compression or denoising [5,6].
Multiwavelets may well be ideally suited to multichannel signals such as color images (which
are two-dimensional, three-channel signals) and stereo audio signals (which are one-dimensional,
two-channel signals).

In this paper, we present a particular multiwavelet construction which is suited for microlocal
filtering. Microlocal analysis plays an important role in the theory of hyperfunctions, partial
differential operators, and many other areas. In this theory, one can define the product of
distributions and discuss the partial regularity of multidimensional distributions with respect to
any independent variable. Microlocal analysis could be called “local Fourier analysis”.

We shall construct multidimensional multiwavelets which have the property that decomposition
into this basis reveals directions of analyticity. The resolution of these multiwavelets in any given
direction of analyticity can be made as fine as desired, at the cost of increasing the multiplicity
of the multiwavelet basis. Each multiwavelet corresponds to one direction of analyticity, and
each coefficient of the multiwavelet expansion of a function or signal gives a rough estimate of
its microlocal content, or microanalyticity. This is impossible for single wavelets (“uniwavelets”).
Since projections defined by means of our multiwavelets give a rough microlocal decomposition,
they will be called microlocal filters. Microlocal filtering can be done numerically, and we provide
some numerical examples. Furthermore, while, for simplicity, we restrict attention to L2(Rn),
we note that microlocal filtering could be applied to more general function classes. Finally, we
present a library of orthonormal multiwavelet bases which may be suitable for implementation
via the best basis wavelet packet algorithm.

2. MICROLOCAL ANALYSIS

In this section, we briefly review microlocal analysis for Schwartz distributions based on the
theory of hyperfunctions, following [7].

We shall consider cones in the space Rny of imaginary coordinates. We assume that every cone
has its vertex at the origin. A subset Γ of Rn is called a cone if for all t > 0, we have tΓ ⊂ Γ. A
cone Γ is said to be proper if Γ \ {0} is contained in an open half-space with boundary through
the origin. If Γ and Γ′ are two cones, the notation Γ′ ⊂⊂ Γ means that Γ′ ∩ {|y| = 1} is strictly
contained in the interior of Γ. Note that the relation Γ′ ⊂⊂ Γ is not the same as Γ′ ⊂ Γ. For
example, if Γ′ is a closed cone and Γ is an open cone, the origin is an exceptional point.

If ∆ is an open set in Rn, then the subset Rn + i∆ := {z = x + iy;x ∈ Rn, y ∈ ∆} in Cn is
called a tubular domain. A tubular domain of the form Rn + iΓ where Γ is a cone in Rn is called
a wedge with edge Rn and opening Γ.

Let Γ be a cone Rny . If ∆ is an open set in Rny which approaches Γ asymptotically near the
origin from the interior of Γ, then the subset U = Rn + i∆ of Cn is called an infinitesimal wedge
with opening Γ, and is denoted by Rn + iΓ0 (see Figure 2).

The following notation will be used.

Notation 1.

• Γ is an open cone in Rn.
• Γ′ is a closed cone in Rn.
• C0(Rn) is the space of continuous functions on Rn.
• D′(Rn) is the space of distributions on Rn.
• S ′(Rn) is the space of slowly increasing distributions on Rn.
• O(U) is the set of holomorphic functions in the open set U ∈ Cn.
• Z+ = {0, 1, 2, . . . } is the set of natural numbers including zero.
• α = (α1, α2, . . . , αn) with αj ∈ Z+ is a multi-index of nonnegative integers.
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Figure 2. An infinitesimal wedge Rn + iΓ0.

• |α| = α1 + α2 + · · ·+ αn is the length of the multi-index α.
• ∂αx = ∂α1

x1
∂α2
x2
. . . ∂αnxn and Dα = (−i)|α| ∂αx .

We now define some classes of functions and distributions.

Definition 1. The above notation is used.

(a) A continuous function g ∈ C0(Rn) is said to be slowly increasing or exponentially decreas-
ing , respectively, on a closed cone Γ′ if there exist positive numbers C and M , or C and δ,

respectively, such that

|g(x)| ≤ C (1 + |x|)M or |g(x)| ≤ C e−δ|x|, on Γ′. (1)

(b) A distribution f ∈ D′(Rn) is said to be slowly increasing or exponentially decreasing ,

respectively, on an open cone Γ if it can be represented as a finite sum

f(x) =
∑
|α|≤m

Dαgα(x), (2)

where gα ∈ C0(Rn) are slowly increasing, or exponentially decreasing functions, respec-

tively, on every closed cone Γ′ ⊂⊂ Γ.

(c) A holomorphic function f ∈ O(U) is said to be slowly increasing in U if it can be repre-

sented as a finite sum

f(z) =
∑
|α|≤m

Dαgα(z), (3)

where each function gα ∈ O(U) is continuous on the closure U of U and satisfies the

estimate

|gα(z)| ≤ Cα (1 + |z|)M , on U. (4)

If U = Rn+iΓ0 is an infinitesimal wedge, f(z) is said to be a slowly increasing holomorphic
function in the infinitesimal wedge U .

Let f(z) be a slowly increasing holomorphic function in an infinitesimal wedge Rn+ iΓ0. Then,
by definition, there exists a tubular domain Rn + i∆ such that f(z) has representation (3) in
Rn + i∆, where the slowly increasing holomorphic functions gα(z) are continuous on Rn + i∆.
Hence, the restriction of f(z) to Rn yields a slowly increasing distribution f(x) on Rn that is
defined by the right-hand side of (3). Further, for every sequence of points {y(k)} lying inside ∆
and tending to 0 as k →∞, we have

f(x) = lim
y(k)→0

y(k)∈∆

f
(
x+ iy(k)

)
. (5)
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For simplicity, we shall write (5) as

f(x) = f(x+ iΓ0), (6)

indicating that f(x) is a “generalized boundary value” of a holomorphic function in an infinitesi-
mal wedge Rn + iΓ0. Such a distribution can be thought of as being analytic with respect to the
direction of Γ.

We now turn to the study of the directional analyticity of a distribution.

Definition 2. A distribution f(x) is said to be analytic with respect to a direction ξ0 if it can

be represented as a finite sum of limits fj(x + iΓj0) of slowly increasing holomorphic functions

fj(z) in Rn + iΓj0 such that for every j, we have

Γj ∩ {y ∈ Rn; y · ξ0 < 0} 6= ∅.
Remark 1. The above representation of f(x) by a finite sum of limits fj(x + iΓj0) of slowly
increasing holomorphic functions corresponds to an intuitive definition of hyperfunctions. Let Ω
be an open set in Rn. If, for j = 1, . . . , N , Fj(z) is a holomorphic function defined on an
infinitesimal wedge Ω + iΓj0, then intuitively a hyperfunction is a commutative formal sum

f(x) =
N∑
j=1

Fj (x+ iΓj0)

of boundary values of holomorphic functions Fj(z) defined in Ω+iΓj0 (see [8]). Figure 3 illustrates
Ω + iΓj0. Note that an infinitesimal wedge of the form Rn + iΓj0 is a tubular domain, but, in
general, an infinitesimal wedge of the form Ω + iΓj0 need not be a tubular domain if Ω 6= Rn.

Figure 3. An infinitesimal wedge Ω + iΓj0.

In this paper, the Fourier transform f̂(ξ) of f(x) is defined by

f̂(ξ) :=
∫
Rn
f(x) e−ixξ dx.

To characterize the microanalyticity of a slowly increasing distribution f ∈ S ′(Rn) by its
Fourier transform f̂ , we introduce the dual cone, Γ◦, of Γ defined by

Γ◦ := {ξ ∈ Rn; y · ξ ≥ 0, for every y ∈ Γ}
(see Figure 4). If Γ is a cone in Rn then the dual cone Γ◦ is a closed convex cone in Rn. Moreover,
Γ◦ is a proper cone. The complement of Γ◦ is denoted by (Γ◦)c.

 

Figure 4. Open cone Γ, dual cone Γ◦, and complement (Γ◦)c of dual cone.
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The following two lemmas are standard (see [7]).

Lemma 1. Let Γ be an open convex cone. A slowly increasing distribution f(x) ∈ S ′(Rn) can

be represented as the limit f(x + iΓ0) of a slowly increasing holomorphic function f(z) in the

infinitesimal wedge Rn+iΓ0 if and only if the Fourier transform f̂ of f is exponentially decreasing

in the open cone (Γ◦)c, the complement of Γ◦, that is, f̂ is exponentially decreasing on every

closed proper subcone Γ′ ⊂⊂ (Γ◦)c.

The convex hull of an open cone Γ is denoted by coΓ. It can be shown that Γ◦ = (coΓ)◦.

Lemma 2. Bochner. Let Γ be an open connected cone. Every slowly increasing holomorphic

function in the infinitesimal wedge Rn + iΓ0 can be extended to a slowly increasing holomorphic

function in the infinitesimal wedge Rn + i(coΓ)0.

Hereafter, we shall always assume that the opening Γ of an infinitesimal wedge is convex. The
larger the opening Γ, the more regular a slowly increasing distribution f(x + iΓ0) will be. The
largest opening Γ is the whole space, in which case f(x + iΓ0) is analytic. The next largest
possible openings Γ are half-spaces.

Let a slowly increasing distribution f(x) be analytic with respect to a direction ξ0. Then, by
Definition 2, f(x) can be represented as a finite sum of limits fj(x + iΓj0) of slowly increasing
holomorphic functions in Rn + iΓj0 such that Γj ∩ {y ∈ Rn; y · ξ0 < 0} 6= ∅ for each j. By
Lemma 1, each Fourier transform f̂j(ξ) is exponentially decreasing in the open cone (Γ◦j )

c. Since
ξ0 /∈ Γ◦j , there exists an open cone Γ containing ξ0 such that the Fourier transform f̂(ξ) =

∑
f̂j(ξ)

is exponentially decreasing in Γ.
It is desirable to localize the directional decay of a function in ξ-space (Fourier space), because

local nonsmoothness of a function f in x-space corresponds to slow decay of the Fourier trans-
form f̂ along some directions at infinity. Each such direction corresponds to a point on the unit
sphere Sn−1 in ξ-space. Therefore, we shall use the coordinates (x, ξ) ∈ Rn × Sn−1 to represent
a point x ∈ Rn together with a direction ξ ∈ Sn−1.

Definition 3. A distribution f(x) ∈ D′(Rn) is said to be analytic at x0 ∈ Rn if there exists an

open neighborhood V ⊂ Rn of x0 such that the restriction f |V of f on V is analytic in V . The

set of all points x ∈ Rn where f is not analytic is called the singular support of f and is denoted

by sing suppf .

Definition 4. A distribution f(x) is said to be microanalytic or microlocal analytic at (x0, ξ0) ∈
Rn × Sn−1 if there exists a distribution g(x) which is analytic with respect to the direction ξ0
such that f(x)−g(x) is analytic in a neighborhood of x0. The set of all points (x, ξ) ∈ Rn×Sn−1

where f is not microanalytic is called the singular spectrum of f and is denoted by S.S.f .

Remark 2. Let π be the natural projection from Rn × Sn−1 to Rn. Then

π(S.S.f) = sing suppf.

Hence, an analytic function is a function which is microanalytic at every point (x, ξ).

The following lemma shows that the singular spectrum is an invariant concept under analytic
local coordinate transformations (see [7]).

Lemma 3. Let y = F (x) be an analytic local coordinate transformation with Jacobian matrix

dF (x) = (∂Fj∂xk
). Then(

x,
dF (x)> η
‖dF (x)> η‖

)
∈ S.S.f(x) =⇒ (y, η) ∈ S.S.f

(
F−1(y)

)
and (

x,
dF (x)> η
‖dF (x)> η‖

)
6∈ S.S.f(x) =⇒ (y, η) 6∈ S.S.f

(
F−1(y)

)
,

where dF (x)> denotes the transpose matrix of dF (x).
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3. MULTIWAVELETS

We define multiwavelets in this section, referring to [9] for detail. The following notation will
be used.

Notation 2.

• Given f ∈ L2(Rn), fjk(x) denotes the scaled and shifted functions

fjk(x) = 2nj/2f
(
2jx− k

)
, j ∈ Z, k ∈ Zn.

• Given f1, . . . , fd ∈ L2(Rn), F denotes the vector-valued function F = (f1, . . . , fd) ∈
L2(Rn)d and Fjk denotes the scaled and shifted vector-valued functions

Fjk = ((f1)jk, . . . , (fd)jk) , j ∈ Z, k ∈ Zn.

• E = {0, 1}n \ {(0, . . . , 0)} is the set of 2n − 1 vertices of the n-dimensional unit cube less
the origin.
• D = {1, . . . , d} for a positive integer d.
• 〈u, v〉 =

∫
u(x)v̄(x) dx denotes the inner product on L2(Rn).

Definition 5. Let the 2n−1 functions Ψε := (ψε1, . . . , ψεd) ∈ L2(Rn)d, ε ∈ E, be such that the

system {
(ψεδ)jk(x) := 2nj/2 ψεδ

(
2jx− k

)}
ε∈E, δ∈D, j∈Z, k∈Zn

(7)

forms an orthonormal basis for L2(Rn). Then {Ψε}ε∈E is called a family of 2n−1 multiwavelets, or

multiwavelet functions, the functions (ψεδ)jk are called multiwavelets, (7) is called an orthonormal
multiwavelet basis, and any f ∈ L2(Rn) admits the multiwavelet expansion

f =
∑

ε∈E, δ∈D
j∈Z, k∈Zn

〈f, (ψεδ)jk〉 (ψεδ)jk. (8)

4. ONE-DIMENSIONAL MICROLOCAL FILTERING

In the one-dimensional case, i.e., n = 1, the definition of hyperfunctions is simple. Let Ω be an
open subset of R. An open set U ⊂ C is called a complex neighborhood of Ω if Ω is a relatively
closed subset of U . The directions of analyticity are S0 = {±1}. For a complex neighborhood U

of Ω, corresponding to the directions ±1, define

U+ := U ∩ {Imz > 0}, U− := U ∩ {Imz < 0}.

We can take U sufficiently small so that U \ Ω = U+ ∪ U− (see Figure 5).

Figure 5. A complex neighborhood U of Ω.
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A hyperfunction f(x) on Ω is defined by the difference of two holomorphic functions

f(x) = F+(x+ i0)− F−(x− i0), F± ∈ O(U±).

For simplicity, we write F± ∈ O(U±) to mean F+ ∈ O(U+) and F− ∈ O(U−); the same convection
applies throughout the rest of this paper. The pair (F+, F−) is called a defining function. Such
a pair is not unique, since, for each holomorphic function G ∈ O(U), the defining function
(F+ +G,F− +G) determines the same hyperfunction f .

Our goal in this one-dimensional setting is to construct a multiwavelet function Ψ := (ψ+, ψ−),
corresponding to the directions ±1 of analyticity, such that the functions (ψ±)jk are localized in
both x and ξ and the pair of projections

P±f :=
∑

j∈Z, k∈Z
〈f, (ψ±)jk〉 (ψ±)jk, f ∈ L2(R), (9)

yield a defining function (P+f,P−f) of f . In this case, each term 〈f, (ψ±)jk〉 (ψ±)jk may serve
as a comparison function g in the sense of Definition 4 to measure the microanalyticity of f .
Moreover, even when dealing with a function f̃ /∈ L2(R), if there exists a real analytic function h,
say, a polynomial, such that f̃ − h ∈ L2(R), then we can measure the microanalyticity of f̃ by
measuring the microanalyticity of f̃ − h.

Our construction of multiwavelet functions is closely related to the classical Hardy spaces
H2(R±) defined by

H2(R+) :=
{
f ∈ L2(R); f̂(ξ) = 0, for a.a. ξ ≤ 0

}
,

H2(R−) :=
{
f ∈ L2(R); f̂(ξ) = 0, for a.a. ξ ≥ 0

}
.

Hereafter, we shall use the convention that [a, b] denotes the interval [b, a] when b < a.

Theorem 1. Consider the multiwavelet function Ψ := (ψ+, ψ−) where ψ± are defined by ψ̂± =
χ[±2π,±4π] (see Figure 6) and let P± be the projections defined by (9). Then for each f ∈ L2(R),
P±f can be continued analytically to the upper and lower half-planes H+ := {z ∈ C; Imz > 0}
and H− := {z ∈ C; Imz < 0}, respectively.

Figure 6. Functions ψ̂± = χ[±2π,±4π].

Proof. It is well known that every element of H2(R±) can be continued analytically to H±.
Since L2(R) = H2(R+) ⊕ H2(R−), where ⊕ denotes the orthogonal sum, it is enough to show
that ψ± is a uniwavelet function for H2(R±). But this is immediate since {(ψ±)jk}j∈Z, k∈Z
forms an orthonormal basis for H2(R±) (see, for example, [10; 11, Section 5; 12, Section 7.6]).
Hence, {(ψ+)jk, (ψ−)jk}j∈Z, k∈Z forms an orthonormal basis for L2(R), which means that Ψ is a
multiwavelet function for L2(R).

Remark 3. The multiwavelet system defined in Theorem 1 is associated with a multiresolution
analysis. In particular, if ϕ± is defined by ϕ̂± = χ[0,±2π], then Φ := (ϕ+, ϕ−) is a multiscaling
function for the above multiwavelets. We refer to [9] for the connection between multiscaling
functions, multiresolution analysis, and multiwavelets.

Remark 4. The multiwavelets {(ψ+)jk, (ψ−)jk}j∈Z, k∈Z of Theorem 1 provide us with the best
possible resolution in ξ-space, because the directions of analyticity are S0 = {±1}. In x-space,
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however, (ψ±)jk are multiples of cardinal sine functions; thus, the resolution is rough, but the
coefficients of the multiwavelet expansion can be calculated numerically.

Next, we consider the possibility of obtaining a finer resolution in x-space while keeping the
best resolution in ξ-space. In one sense, this is impossible. In fact, if we keep the best resolution
in ξ-space, ψ± must be uniwavelet functions of H2(R±). However, it is known that there exist
no smooth (in ξ-space) wavelets in H2(R±). More precisely, there are no wavelet functions
ψ+ ∈ H2(R+) satisfying the following two conditions:∣∣∣ψ̂+

∣∣∣ is continuous on R

and ∣∣∣ψ̂+(ξ)
∣∣∣ = O

(
(1 + |ξ|)−α−1/2

)
, as |ξ| → ∞ for some α > 0.

See, for example, [12, Section 7.6; 13]
One solution to this problem is to use a multiwavelet frame. A collection of functions {(ψ+)jk,

(ψ−)jk}j∈Z, k∈Z is called a tight frame for L2(R) with frame bound A if

A ‖f‖2 =
∑
δ∈{±}
j∈Z, k∈Z

|〈f, (ψδ)jk〉|2, for all f ∈ L2(R).

In this case, each f ∈ L2(R) can be expanded in a series of the form

f =
1
A

∑
δ∈{±}
j∈Z, k∈Z

〈f, (ψδ)jk〉 (ψδ)jk. (10)

We refer to [4] or [11] for the derivation of basic properties of frames. One disadvantage of frames
is that the representation in (10) need not be unique in general. However, for many applications,
including microlocal filtering, uniqueness is not essential.

Smooth frames for H2(R±) were first constructed in [10]. The following construction is from
[12, Section 8.4]. Given ε > 0, let sε be a C∞ function such that s2ε(x) = sε(x/2), sε(x) = 0 for
x < ε, and s2

ε(x) + c2ε(x) = 1, where cε(x) = sε(−x). For 0 < ε ≤ (1/3)π, define a bell function
associated with the interval [π, 2π] by

bε(x) := sε(x− π) c2ε(x− 2π),

and define ψε by

ψ̂ε(ξ) := bε

(
ξ

2

)
, ξ ∈ R. (11)

The following lemma is stated without proof in [12].

Lemma 4. Given 0 < ε ≤ (1/3)π, let ψε be defined by (11). Then {(ψε)j,k}j,k∈Z forms a tight

frame for H2(R+) with frame bound 1. Moreover, ψε is in the Schwartz class S(R) of C∞

functions of fast descent.

Using these smooth frame uniwavelets for H2(R+), we can construct frame multiwavelets for
L2(R) having finer resolution in x-space.

Theorem 2. Let b±ε be bell functions associated with the interval [π, 2π]. Then, b+ε (ξ/2) is

a bell function associated with the interval [2π, 4π] and b−ε (−ξ/2) is a bell function associated

with the interval [−4π,−2π]. Define ψ±(x) by ψ̂±(ξ) = b±ε (±ξ/2), respectively (see Figure 7).

Then {(ψ+)jk, (ψ−)jk}j,k∈Z forms a tight frame for L2(R) with frame bound 1, and furthermore,
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Figure 7. Functions ψ̂±(ξ) = b±ε (±ξ/2).

(ψ±)jk ∈ S(R). Let P± be projections to H2(R±) defined by (9). Then, for each f ∈ L2(R),
P±f can be continued analytically to H±.

5. MULTIDIMENSIONAL MICROLOCAL FILTERING

We now generalize Theorem 1 to the multidimensional case and provide a library of orthonormal
multiwavelet bases from which the best microlocal filtering might be selected by means of a best
basis algorithm.

Notation 3. The following notation will be used.

• H = {±1}n is a parametrization of the 2n n-dimensional orthants in Rn. For example, in
R2, (+1,+1), (−1,+1), (−1,−1), and (+1,−1) correspond to the first, second, third, and
fourth quadrants, respectively.
• For η = (η1, . . . , ηn) ∈ H, denote by Qη the unit cube

∏n
k=1 [0, ηk], where [0,−1] stands

for the interval [−1, 0].
• For ε = (ε1, . . . , εn) ∈ E as defined in Notation 2 and η = (η1, . . . , ηn) ∈ H, denote the

element-wise product by

ε. ∗ η := (ε1η1, . . . , εnηn).

• For ε = (ε1, . . . , εn) ∈ E, η = (η1 . . . , ηn) ∈ H, and j ∈ Z+, define the cube

2j (Qη + ε. ∗ η) :=
{(

2j(x1 + ε1η1), . . . , 2j(xn + εnηn)
)

; (x1, . . . , xn) ∈ Qη
}
.

Then let Qj,ε,η be the collection of unit cubes that cover 2j (Qη + ε. ∗ η) with overlaps of
measure zero, i.e.,

Qj,ε,η :=

{
n∏
k=1

[ηk(`k − 1), ηk`k] + 2j(ε. ∗ η) ; 1 ≤ `1, . . . , `n ≤ 2j , `1, . . . , `n ∈ N

}
,

where [−(`k − 1),−`k] stands for the interval [−`k,−(`k − 1)].
• Given an indexing set K and a collection {Qk}k∈K of subsets of Rn, define

Q := {Qk}k∈K and ι (Q) :=
⋃
k∈K

Qk.

• Define
2πQj,ε,η := {2πQ ; Q ∈ Qj,ε,η}.

• Let ZE×H+ denote the set of all functions from E ×H to Z+.
• For a nonnegative integer N ∈ Z+, let ZN := {0, 1, . . . , N} and denote the set of all

functions from E ×H to ZN by ZE×HN .

Theorem 3. Let j ∈ Z+, ε ∈ E, and η ∈ H. For Q ∈ Qj,ε,η, define ψQ by

ψ̂Q = χ2πQ,
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where χ2πQ is the characteristic function of the cube 2πQ. For ρ ∈ ZE×H+ , let

Qρ :=
⋃

(ε,η)∈E×H
2πQρ(ε,η),ε,η.

Then Ψ := (ψQ)Q∈Qρ is a multiwavelet function.

Proof. First, we claim that
⋃
j∈Z 2jQρ is a nonoverlapping covering of Rn. Consider the case

ρ ≡ 0. We have
Q0 =

⋃
(ε,η)∈E×H

2πQ0,ε,η =
⋃

(ε,η)∈E×H
2π (Qη + ε. ∗ η) .

Since
⋃

(ε,η)∈E×H (Qη + ε. ∗ η) is a nonoverlapping covering of
∏n
k=1 [−2, 2]\

∏n
k=1 (−1, 1) and

⋃
j∈Z

2j
(

n∏
k=1

[−2, 2]
∖ n∏

k=1

(−1, 1)

)
= Rn,

then
⋃
j∈Z 2jQ0 is a nonoverlapping covering of Rn. For an arbitrary fixed element (ε, η) ∈ E×H,

since the set
⋃
j∈Z 2j2π (Qη + ε. ∗ η) is invariant under multiplication by 2j0 for any j0 ∈ Z, we

have

⋃
j∈Z

2jQ0 =
⋃

(ε,η)∈E×H

⋃
j∈Z

2π (Qη + ε. ∗ η)


=

⋃
(ε,η)∈E×H

⋃
j∈Z

2π2ρ(ε,η) (Qη + ε. ∗ η)


=
⋃
j∈Z

2jQρ.

Next, consider a cube 2πQ ∈ Qρ. Because ψ̂Q = χ2πQ, the collection{
eikξψ̂Q(ξ)

}
k∈Zn

forms an orthonormal basis for the space of L2(Rnξ ) functions supported on 2πQ. By Plancherel’s
formula,

{ψQ(x− k)}k∈Zn

is an orthonormal basis for the space of L2(Rnx) functions whose Fourier transforms are supported
in 2πQ. Taking the union of these orthonormal bases for 2πQ ∈ Qρ, we obtain an orthonormal
basis for the space of functions whose Fourier transforms are supported in ι(Qρ) defined in
Notation 3. The dilates of those functions form an orthonormal basis for functions whose Fourier
transforms are supported in dilates of ι(Qρ), and combining these in all possible ways, we obtain
the following multiwavelet orthonormal basis for L2(Rn):{

2nj/2ψQ
(
2jx− k

)}
Q∈Qρ,j∈Z,k∈Zn

.

Corollary 1. For η ∈ H, define ϕη by ϕ̂η = χ2πQη . Then Φ := (ϕη)η∈H is a multiscaling

function for the multiwavelet system of Theorem 3.

Remark 5. Since each ψQ is the product of a complex exponential and cardinal sine functions
in the variables xk, k = 1, . . . , n, multiwavelet coefficients can be calculated numerically.

The points (ε, η) ∈ E ×H can be thought of as rough directions of analyticity. By choosing ρ
so that ρ(ε, η) is large, that is, by taking the set 2ρ(ε,η) (Qη + ε. ∗ η) to be a large cube, the
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Figure 8. Two-dimensional example of Qρ.

Fourier transform of each function ψQ for Q ∈ Qρ(ε,η),ε,η has support contained in a cube 2πQ ∈
2πQρ(ε,η),ε,η which subtends a very small angle as viewed from the origin (see Figure 8).

By Lemma 1, for a given function f , the cubes Q for which ψQ have large wavelet coefficients
indicate fairly well the directions along which the Fourier transform of f is concentrated, that
is, the directions of analyticity of f . The cost for a good angular resolution in ξ-space is many
multiwavelets. Even though these multiwavelets have rough localization in x-space, they still can
be used as a tool for microlocal filtering.

Definition 6. Let N ∈ Z+. The family of orthonormal multiwavelet bases

MFBN :=
{{

2nj/2ψQ
(
2jx− k

)}
Q∈Qρ,j∈Z,k∈Zn

ρ ∈ ZE×HN

}
is called a library of microlocal filtering bases of level N .

Once we have a library of microlocal filtering basesMFBN for a given function f , we can find
the best microlocal filtering basis for f in MFBN by an entropy functional criterion as in [14].

6. FAST MICROLOCAL FILTERING ALGORITHM

To implement the multiwavelet transform of f , we need the scaling coefficients at high res-
olution. Recall that in the uniwavelet case, at very high resolution, the scaling functions are
usually close to the delta function; hence, the samples of the function f are often used as scaling
coefficients. However, for multiwavelets we need expansion coefficients for d scaling functions.
Simply using nearby samples as scaling coefficients may be a bad choice. Data samples need to
be preprocessed (prefiltered) to produce reasonable values for the expansion coefficients of scaling
functions at the highest scale.

Our design of prefilter is the following. Let ϕη, η ∈ H, be the scaling functions defined by
ϕ̂η = χ2πQη in Corollary 1. Assume that f ∈ Span{(ϕη)j0k}η∈H, k∈Zn for large j0, that is,
suppf̂ ⊂ 2π2j0 [−1, 1]n. Then,

f(x) =
∑

η∈H, k∈Zn
〈f, (ϕη)j0k〉 (ϕη)j0k(x).

By Plancherel’s formula,

〈f, (ϕη)j0k〉 = (2π)−n
〈
f̂ , ( \ϕη)j0k

〉
= (2π)−n

〈
f̂ , 2−nj0/2e−ikξ/2

j0
ϕ̂η

(
ξ

2j0

)〉
= 2−nj0/2 (2π)−n

∫
Rn
eikξ/2

j0
f̂(ξ)χ2π2j0Qη (ξ) dξ

= 2−nj0/2F−1
[
f̂(ξ)χ2π2j0Qη (ξ)

]( k

2j0

)
.
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Hence,

f(x) =
∑

η∈H, k∈Zn
F−1

[
2−nj0χ2π2j0Qη (ξ)f̂(ξ)

]( k

2j0

)
2nj0/2(ϕη)j0k(x).

Denote
fη(x) =

∑
k∈Zn

F−1
[
2−nj0χ2π2j0Qη f̂

]
(x), η ∈ H.

Since 2nj0/2(ϕη)j0k are close to delta functions for sufficiently large j0, it follows that

f(x) ≈
∑
η∈H

fη(x).

Therefore, fη(x) can be regarded as prefiltered data for each scaling function ϕη. In this case,
the prefilters are

Pη = F−1 ◦ 2−nj0χ2π2j0Qη ◦ F , η ∈ H,

for sufficiently large j0. Here 2−nj0χ2π2j0Qη denotes the multiplication operator by the function
2−nj0χ2π2j0Qη .

Denote
V ηj = Span {(ϕη)jk}k∈Zn , η ∈ H, j ∈ Z.

For each η ∈ H, {V ηj }j∈Z is an increasing sequence of subspaces which defines a (uniwavelet)
multiresolution analysis of V η ⊂ L2(Rn). We can apply a fast uniwavelet transform and truncate
filter coefficients at each resolution level of {V ηj }j∈Z. Finally, since {V η}η∈H is an orthogonal
decomposition of L2(Rn), we need only sum up all the filter coefficients with respect to η ∈ H.

To apply this algorithm to images, we put n = 2 and j0 = 0 and use the two-dimensional fast
Fourier transform for prefiltering. Figure 9 is an example of microlocal prefiltering of images. In
this figure, if brightness is scaled from one to zero, white is one and black is zero.

In this example, the prefiltered image by P(+,−) has maximum energy among the four prefiltered
images by P(±,±), because it is the brightest. The following tableau lists the energy of the four
prefiltered images.

Energy = 1.0e + 06*
2.2059 2.0735
2.5749 8.5187.

Experimentally, we observed that singular parts, or details, of images contain less energy than
regular parts, or approximations, of images. Hence, we suspect that the prefiltered image by
P(+,−) contains regular parts of the original image and the other three prefiltered images contain
singular parts of the original image. Let us look at the three filtered images by P(+,−) + P(−,−),
P(+,−) + P(+,+), and P(+,−) + P(−,+).

In the first case, the support of the Fourier transform of the filtered image by P(+,−) + P(−,−)

is contained in the half-space {(ξ, η) ∈ R2 ; η ≤ 0}. Hence, Lemma 1 implies that there exist an
open cone Γ1 containing (ξ, η) = (0,−1) and a holomorphic function f1(z) in the infinitesimal
wedge R2 + iΓ10 such that the filtered image by P(+,−) + P(−,−) is represented as the limit
f1(x+ iΓ10).

Similarly, in the second case, the support of the Fourier transform of the filtered image by
P(+,−)+P(+,+) is contained in the half-space {(ξ, η) ∈ R2; ξ ≥ 0}. Hence, by Lemma 1, there exist
an open cone Γ2 containing (ξ, η) = (1, 0) and a holomorphic function f2(z) in the infinitesimal
wedge R2 + iΓ20 such that the filtered image by P(+,−) + P(+,+) is represented as the limit
f2(x+ iΓ10). Hence, these two filtered images by P(+,−) + P(−,−) and P(+,−) + P(+,+) are, in a
sense, “approximations” of the original.

In the third case, however, the support of the Fourier transform of the filtered image by
P(+,−) + P(−,+) is not restricted to half spaces. Hence, we may assume the Fourier transform
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Figure 9. Microlocal prefiltering of an image. White is one and black is zero.

of the filtered image by P(+,−) + P(−,+) cannot have exponential decay on any half-space (this
is an assumption in dealing with images). Then the filtered image by P(+,−) + P(−,+) cannot
be represented as a boundary value of a single holomorphic function in an infinitesimal wedge.
However, it can be represented as a sum of boundary values of several holomorphic functions in
infinitesimal wedges. This means that the filtered image by P(+,−) + P(−,+), in a sense, may be
a “detail” only. These “regularities” and “singularities” can be seen in Figure 9.

7. NUMERICAL EXAMPLES

We present commonly used examples of hyperfunctions in R2 and illustrate their microanalyt-
icity numerically.
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Each example is formulated as a Matlab image A with mn pixels in the form of an m × n
matrix with nonnegative real elements. The two-dimensional discrete fast Fourier transform of
A produces a matrix B of the same dimensions as A. Then B is prefiltered by splitting it into
four parts of dimensions (m/2)× (n/2),

B =
[
B11 B12

B21 B22

]
,

and each part is filtered by three disjoint masks. Each of these twelve parts is appropriately
padded with zeros to the original size m × n and its discrete fast inverse Fourier transform is
analyzed for the directions of microlocal analyticity of the given function. The twelve filter masks
are shown in Figure 10, where black is one and white is zero. Each of the center prefilter masks
is the sum of the three outside adjacent masks. The masks are arranged in a 4×4 matrix and an
image whose Fourier transform has been prefiltered or filtered by the (i, j) mask will be referred
to as its (i, j)th part.

Figure 10. Each of the four center prefilter masks is the sum of the three adjoining
filter masks padded with zeros. Black is one and white is zero. The dashed frames
are used to delimit the masks.

7.1. A Hyperfunction with Microanalytic Direction in its Singular Support

Consider the one-variable hyperfunction

f(x1) = (x1 + i0)λ,

with defining functions
F+(z1) = zλ1 , F−(z1) = 0.

The function f(x1) is analytic with respect to the direction ξ1 = −1 and has singular spectrum

S.S. f(x1) = {x1 = 0} × {ξ1 = +1}.

Let us transform this one-variable hyperfunction f(x1) to the two-variable hyperfunction f(y1 −
y2) in R2. Define an analytic transformation y = F (x) from R2 to R2 by[

y1

y2

]
=
[

1 1
0 1

] [
x1

x2

]
= A

[
x1

x2

]
.
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Since this transformation is linear, its Jacobian matrix, dF (x), is equal to A,

dF (x) =
[

1 1
0 1

]
.

Hence, y = F (x) is a bijection on R2 and its inverse, x = F−1(y), is[
x1

x2

]
=
[

1 −1
0 1

] [
y1

y2

]
= A−1

[
y1

y2

]
.

The singular spectrum of f(x1) as a two-variable function is

S.S. f(x1) =
{

(x1, x2, ξ1, ξ2) ∈ R2 × S1; x1 = 0, ξ1 = +1
}
.

Since
F ({x1 = 0}) = {y1 − y2 = 0}

and

ξ =
[

1
0

]
=

dF (x)> η
‖dF (x)> η‖ =

A> η

‖A> η‖ ,

that is,

η =
(
A>
)−1

[
c

0

]
, c =

∥∥A> η∥∥ =⇒ η =
[

c

−c

]
, c =

1√
2
,

then Lemma 3 implies that the function f(y1 − y2) has singular spectrum

S.S. f(y1 − y2) =
{

(y1, y2, η1, η2) ∈ R2 × S1; y1 = y2, η1 =
1√
2
, η2 = − 1√

2

}
.

See also [15, p. 222]. For numerical convenience, we shall consider this function on a 256 × 256
matrix A with singularity along the secondary diagonal

a(m− s+ 1, r) =
[

r − s− iε
(r − s)2 + 2ε2

]λ
, r = 1, 2, . . . ,m, s = 1, 2, . . . ,m,

with λ = 1/2 and ε = 10−3. Figure 11 shows the result of the numerical microlocal analysis of f
by the twelve masks of Figure 10.

Figure 11. The microlocal content of the twelve partitions of the original figure.
White is one and black is zero in a gray scale.
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The energy in each of the twelve parts, measured by their Frobenius norm, is shown in the
following tableau.

Energy = 1.0e + 06*
9.4796 0.4414 0.1644 0.0661
0.4414 0.0727
0.1644 0.5355
0.0661 0.0727 0.5355 8.7079.

The difference between the sum of the twelve parts and the original figure, in the maximum
norm, is

2.7102e− 10.

It is seen from Figure 11 that the top left and the bottom right filters pick up almost all the
energy in the Fourier transformed image. Hence, the direction along the main diagonal, r = s, is
in the singular spectrum of f and the direction along the secondary diagonal, m − r + 1 = s, is
a direction of microanalyticity.

7.2. An Image with Support of Its Fourier Transform in the First Quadrant

In this example, the Fourier transform B of image A is the function

f̂(ξ1, ξ2) =
{
ξ1ξ2, for ξ1 ≥ 0, ξ2 ≥ 0,

0, otherwise.

The inverse Fourier-Laplace transform of f̂(ξ1, ξ2) is

f(x1 + iy1, x2 + iy2) =
1

4π2

1
(x1 + iy1)2

1
(x2 + iy2)2

.

Prefiltering and filtering of the Fourier transform of A is done by the prefilters and filters of
Figure 10. The energy in each of the twelve filtered parts, measured by their Frobenius norm, is
shown in the following tableau.

Energy = 1.0e + 05*
0.0000 0.0000 2.3459 6.1648
0.0000 2.3159
0.0000 0.0000
0.0000 0.0000 0.0000 0.0000.

The difference between the sum of the twelve parts and the original figure, in the Frobenius
norm, is

8.3745e− 12.

In this example, it was convenient to take for image A the inverse Fourier transform of image B.
These are shown in Figure 12, where, in a gray scale, black is one and white is zero. The pixels
in the 8× 8 central square of image A have been set to 164 to enhance the remaining pixels. Due
to boundary discontinuities of finite-size images, it would have been difficult to start from A to
produce an image B with zero energy outside the first quadrant in Fourier space as shown in the
above tableau.

7.3. A Hyperfunction without Microanalytic Direction in the Singular Support

Consider the one-variable distribution

f(x1) = δ(x1),
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Figure 12. Image A built from image B in the Fourier space. Black is one and white
is zero. The dashed frames are used to delimit the figures.

where the Dirac mass δ(x) has defining functions

F±(z1) = − 1
2πi

1
z1
.

The function f(x1) has singular spectrum

S.S. f(x1) = {x1 = 0} × {ξ1 = ±1}

in opposite directions, and hence, has no direction of microanalyticity. Let us transform this
one-variable distribution to a two-variable distribution f(y1 − y2) in R2. Such a distribution is
called a line impulse in the image processing literature [16, p. 4]. By Lemma 3, the function
f(y1 − y2) has singular spectrum

S.S. f(y1 − y2) =
{

(y1, y2, η1, η2) ∈ R2 × S1; y1 = y2, (η1, η2) = ±
(

1√
2
,− 1√

2

)}
.

See also [15, p. 222].
In this example a line impulse is simulated numerically by a 256× 256 matrix A with elements

on the secondary diagonal equal to 100,

a(257− r, r) = 100, r = 1, 2, . . . , 256,

and all the other elements are set to zero, as shown in Figure 13a. In this figure, black is one
and white is zero in a gray scale. The absolute value of the fast Fourier transform of the original
figure is shown in Figure 13b. Prefiltering and filtering by the filters of Figure 10 recover the
line structure of the original image. The filtered part (4, 4), shown in Figure 13c, contains the
secondary diagonal line at about half the intensity of the original line. The filtered parts (1, 1),
(2, 2), and (3, 3) (not shown) are similar to part (4, 4). The remaining 12 filtered parts are white
(part (1, 4) is shown in Figure 13d).

(a) (b)

Figure 13. Filtering of an image containing a line impulse along the secondary
diagonal. Black is one and white is zero. The dashed frames are used to delimit the
figures.
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(c) (d)

Figure 13. (cont.)

The energy in each of the twelve parts, measured by their Frobenius norm, is shown in the
following tableau.

Energy = 1.0e + 05*
2.8862 0.0853 0.0000 0.0000
0.0853 0.0000
0.0000 0.0853
0.0000 0.0000 0.0853 2.8862.

The difference between the sum of the twelve parts and the original figure, in the Frobenius
norm, is

8.3745e− 12.

It is seen from the tableau that the prefilters for the matrices B11 and B22 pick up all the energy
in the Fourier transformed image. Since most of this energy is picked up by the top left and
bottom right filters, it is seen that the opposite directions along the secondary diagonal are in
the singular spectrum of f .

7.4. Denoising

In this example, a vertical line impulse of height 100 in column 60 of a 256× 256 matrix with
remaining elements equal to zero, is superimposed with a random noise of maximum height 100
over all the pixels of the matrix. One hundred minus the original image is shown in the left part
of Figure 14. In this figure, white is one and black is zero in a gray scale.

Prefiltering and filtering by the filters of Figure 10 recover the line structure of the original
image as shown in the right part of Figure 14. The energy in each of the twelve filtered parts,
measured by their Frobenius norm, is shown in the following tableau.

Energy = 1.0e + 06*
0.5475 0.5459 0.5486 0.5469
0.5425 0.5524
2.9939 3.1255
0.5636 0.5656 1.3740 1.3729.

The filtered images in positions (3, 1) and (3, 4) contain most of the energy.
The difference between the sum of the twelve parts and the original figure, in the Frobenius

norm, is
6.4367e−11.

The difference between the sum of parts (3, 1) and (3, 4) and the original figure, in the Frobenius
norm, is

1.1990e + 04.

It is seen that the filters in positions (3, 1) and (3, 4) of Figure 13 recover the vertical line
by eliminating much of the noise. One hundred minus their sum is shown in the right part of
Figure 14.
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Figure 14. Original figure with noise and image from the sum of filtered parts (3, 1)
and (3, 4). White is one and black is zero in a gray scale.

7.5. Detection of Smooth and Singular Parts of an Image

In this example, a diagonal line impulse of height 100 is added to an exponentially decreasing
radial function on a 256 × 256 matrix, as shown in Figure 15, where black is one and white is
zero in a gray scale.

Figure 15. Original smooth image with a line impulse singularity. Black is one and
white is zero. The dashed frame delimits the image.

Prefiltering and filtering by the filters of Figure 10 separate the smooth and singular structures
of the original image as shown in Figure 16.

The energy in each of the twelve parts, measured by their Frobenius norm, is shown in the
following tableau.

Energy = 1.0e + 06*
1.3039 1.8358 2.4944 3.4984
1.8358 4.3728
2.4944 5.6681
3.4984 4.3728 5.6681 4.1156.

The difference between the sum of the twelve parts and the original figure, in the Frobenius
norm, is

2.4778e−10.

The difference between the sum of parts (3, 4), (4, 3), and (4, 4) and the original figure, in the
Frobenius norm, is

4.2847e + 04.

Since much of the energy is contained in the parts (3, 4), (4, 3), and (4, 4) of the figure, one
expects that their sum, which is part (3, 3) of Figure 16, will recover the regular part although
with some distortion away from the origin due to mixing of frequencies in the Fourier space (a
phenomenon called aliasing) [16, p. 204]. The singular line impulse is recovered in parts (1, 4)
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Figure 16. Filtering of a smooth function with a line impulse. White is one and
black is zero in a gray scale.

and (4, 1) of Figure 16. Thus, the regular and singular parts of an image can be separated by
means of the twelve filters.

7.6. Image Compression in the Fourier Domain

In this example, a horizontal line impulse of height 100 is added to a 256 × 256 zero matrix
as shown in Figure 17a. In this figure, black is one and white is zero in a gray scale. The
dashed frames are used to delimit the images. The absolute value of the fast Fourier transform
of the original figure is shown in Figure 17b. Prefiltering and filtering by the filters of Figure 10
recover the line structure of the original image. The filtered part (1, 3) contains the horizontal
line at about half the intensity of the original line. The filtered parts (2, 3), (3, 3), and (4, 3) (not
shown) are similar to part (1, 3). The remaining 12 filtered parts are white (part (1, 4) is shown
in Figure 17d).

With no compression, the energy in each of the twelve parts, measured by their Frobenius
norm, is shown in the following tableau.

Energy = 1.0e + 05*
0 0 2.8905 0.0855
0 0.0855
0 0.0855
0 0 2.8905 0.0855.

A first compression omits the zero-energy left half-part of the Fourier transform of the original
image. This compression does not reduce the quality of the reconstructed image.

A further compression is obtained by taking only parts (1, 3), (1, 4), and (2, 4) of the Fourier
transform of the original image. A final compression is obtained by taking only part (1, 3) of the
Fourier transform of the original image.

The difference between the sum of the 12, 6, 3, and 1 parts which are retained and the original
figure, in the Frobenius norm, is,

diff 12 = 2.9865e− 12, diff 6 = 2.9865e− 12, diff 3 = 1.1370e + 03, diff 1 = 1.1390e + 03,

respectively, In the last two cases, compression slightly reduces the quality of the reconstructed
image.
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(a) (b)

(c) (d)

Figure 17. Filtering and compression of an image containing a horizontal line impulse.
Black is one and white is zero. The dashed frames are used to delimit the figures.

From one compression to the next, half the number of 256×256 inverse fast Fourier transforms
need to be done. In Matlab 5.3, sparse matrices cannot be used with the fast Fourier transform.

8. CONCLUSION

Hyperfunctions in Rn have been presented as sums of boundary values of holomorphic func-
tions defined in infinitesimal wedges in Cn. Microlocal analysis has been briefly reviewed and
a multiwavelet system adapted to microlocal filtering is proposed. A rough estimate of the mi-
crolocal content of functions or signals is obtained from their multiwavelet expansions and a fast
algorithm for multiwavelet microlocal filtering is presented. The numerical filtering of a natural
image and several simple geometric figures have been prefiltered and filtered in the Fourier space
to analyze their microanalytic properties.
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