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Abstract. The Gaussian Gabor system at the critical density has the property that it is
overcomplete in L

2(R) by exactly one element, and if any single element is removed then the
resulting system is complete but is not a Schauder basis. This paper characterizes systems
that are overcomplete by finitely many elements. Among other results, it is shown that
if such a system has a reproducing partner, then it contains a Schauder basis. While a
Schauder basis provides a strong reproducing property for elements of a space, the existence
of a reproducing partner only requires a weak type of representation of elements. Thus for
these systems weak representations imply strong representations. The results are applied to
systems of weighted exponentials and to Gabor systems at the critical density. It particular,
it is shown that the Gaussian Gabor system does not possess a reproducing partner.

1. Introduction

Frames are generalizations of orthonormal bases and Riesz bases. They were first in-
troduced by Duffin and Schaeffer in their study of non-harmonic Fourier series [DS52]. A
sequence of vectors {fn}n≥0 is a frame for a separable, infinite dimensional Hilbert space H

if there exist constants A, B > 0 such that the following norm equivalence holds:

A ‖f‖2 ≤
∞∑

n=0

|〈f, fn〉|2 ≤ B ‖f‖2, for every f ∈ H.

We refer to A as a lower frame bound and B as an upper frame bound for {fn}n≥0. A frame
is similar to an unconditional basis in that for every f ∈ H we have an unconditionally
convergent expansion

f =
∞∑

n=0

cnfn (1)

for some scalars (cn)n≥0. However, for a frame the coefficients need not be unique. If the
scalars cn are unique for every f, then {fn}n≥0 is a Riesz basis for H.
There are a variety of other notions related to the existence of representations of elements.

A (strong) Schauder basis is a sequence {fn}n≥0 such that for each f ∈ H there exist unique
scalars cn such that equation (1) holds. A Schauder basis need not have either a lower or
upper frame bound. Further, the representations in equation (1) may converge conditionally,
although there must be a single fixed ordering of the index set with respect to which the
series converge for every f. A weak Schauder basis is similar, except that we only require that
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the series in equation (1) converge weakly for every f. However, the Weak Basis Theorem
implies that every weak Schauder basis is a Schauder basis.
Every Schauder basis is exact, or both minimal and complete. Complete means that the

finite linear span is dense, while minimal means that no element fm lies in the closed span
of the other elements {fn}n 6=m. A sequence can be minimal without being exact. We refer
to texts such as [Chr16] and [Hei11] for details on frames, Riesz bases, Schauder bases, and
related systems.
Given a function g ∈ L2(R) and a countable index set Λ ⊆ R2, the Gabor system generated

by g and Λ is

G(g,Λ) = {MξTxg}(x,ξ)∈Λ = {e2πiξtg(t− x)}(x,ξ)∈Λ,
where Tx is the translation operator Txg(t) = g(t − x) and Mξ is the modulation operator
Mξg(t) = e2πiξtg(t). The compositions TxMξ and MξTx are time-frequency shift operators.
Usually the index set Λ contains some structure. For example, it may be a lattice A(Z2)

for some invertible matrix A, or a rectangular lattice αZ× βZ. In this paper, we will focus
on the case when Λ is a rectangular lattice with density 1 (the critical density), which means
that αβ = 1. By a change of variables, this can always be reduced to the case α = β = 1.
The structure of Gabor frames makes them suitable for applications involving time-

dependent frequency content. Hence, it is not unexpected that Gabor theory has a long
history. Gröchenig [Grö01] and Janssen [Jan01] mention that von Neumann [Neu55] claimed

(without proof) that, for the Gaussian atom ϕ(t) = 21/4e−πt2 and the lattice Λ = Z2, the
Gabor system G(ϕ,Z2) is complete in L2(R). Additionally, Gabor conjectured in [Gab46]
that every function f ∈ L2(R) can be represented in the form

f =
∑

k,n∈Z

cnk(f)MnTkϕ, (2)

for some scalars cnk(f). Later, Janssen [Jan81] proved that Gabor’s conjecture is true, but
with convergence of the series in equation (2) only in the sense of tempered distributions
and not in the norm of L2. Further, the coefficients cnk(f) may grow with k and n. Gabor’s
original system G(ϕ,Z2) is not a frame. It is overcomplete by exactly one element (that is, if
any single element of the system is removed then it is still complete, but if two elements are
removed then it is incomplete). Moreover, the system with one element removed is exact,
but it is not a Schauder basis, and it is not a frame.
Many generalizations of or variations on frames have been introduced. A Bessel sequence

need only satisfy the upper frame bound. A semi-frame [AB11; AB12], need only satisfy one
of the two frame bounds. A quasibasis or Schauder frame [Cas+08] is a sequence {fn}n≥0

for which there exists a sequence {gn}n≥0 such that

f =
∑

n≥0

〈f, gn〉 fn, for every f ∈ H,

where the series converges in norm with respect to some fixed ordering of the index set.
Recently, Speckbacher and Balazs [SB15] introduced reproducing pairs (see also [AST17]).

The general definition is related to continuous frames with respect to arbitrary Borel mea-
sures. However, in this paper we entirely focused on the discrete setting. In that context,
the definition takes the following form.
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Definition 1.1. Let Ψ = {ψi}i∈I and Φ = {φi}i∈I be two countable families in H. Then
(Ψ,Φ) is a reproducing pair for H if the operator SΨ,Φ : H → H that is weakly defined by

〈SΨ,Φf, g〉 =
∑

i∈I

〈f, ψi〉 〈φi, g〉, for f, g ∈ H, (3)

is bounded and boundedly invertible (that is, a topological isomorphism using the terminol-
ogy of [Hei11]). In this case, we say that Ψ is a reproducing partner for Φ, and conversely Φ
is a reproducing partner for Ψ. ♦

We allow the convergence of the infinite series in equation (3) to be conditional, in the
sense that there exists some fixed ordering of the index set I such that the partial sums
of the series converge with respect to that ordering. Since we will mostly be interested in
sequences that are overcomplete by one element (or finitely many later in the paper), we will
often take the index set to be I = {0, 1, 2, . . . }, and in that case assume that the convergence
is with respect to the natural ordering. However, we will make applications to sequences,
such as Gabor systems, that are indexed by other countable sets, and in those settings we
will assume that an ordering has been fixed on the index set.
Since S∗

Ψ,Φ = SΦ,Ψ, if (Ψ,Φ) is a reproducing pair, then (Ψ, S−1
Ψ,ΦΦ) is also a reproducing

pair. Therefore, we can assume without loss of generality that SΨ,Φ = I (see [SB15]). With
this assumption, (Ψ,Φ) is a reproducing pair if for each f ∈ H we have that the representation
f =

∑ 〈f, ψi〉φi holds weakly, i.e.,

〈f, g〉 =
∑

i∈I

〈f, ψi〉 〈φi, g〉, for all f, g ∈ H. (4)

In this sense, a reproducing pair is a weak analogue of a quasibasis or Schauder frame.
Certainly every quasibasis is a reproducing pair; however, it is unclear to us whether the
converse implication holds in general.
In this paper we will consider reproducing pair properties of sequences that are over-

complete by finitely many elements. In Section 2 we consider a sequence Φ that, like the
original Gabor system G(ϕ,Z2), is overcomplete by a single element. We prove in Theorem
2.2 that if such a sequence Φ has a reproducing partner Ψ, then it must contain a Schauder
basis. Specifically, the exact sequence obtained by removing that single element from Φ is a
Schauder basis for H.
In Section 3, we focus on systems of weighted exponentials {e2πintg(t)}n∈Z in L2[0, 1).

We recover a result from [HY12], explicitly showing the existence of weighted exponential
systems that are overcomplete by one element. We prove in Theorem 3.1 that these systems
do not contain a Schauder basis. By applying Theorem 2.2 we construct families of sequences
that do not possess a reproducing partner.
We consider Gabor systems in Section 4. Through the use of the Zak transform, we

prove in Theorem 4.2 and Corollary 4.3 that there exist families of Gabor sequences at
the critical density that do not possess a reproducing partner. In particular, we see that
the Gaussian Gabor system belongs to this family. Balazs and Speckbacher claimed in
[SB17] that Gaussian Gabor system G(ϕ,Z2) does have a reproducing partner. However, we
demonstrate that this is not possible.
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Finally, in Section 5 we show how our results generalize to sequences that are overcomplete
by finitely many elements. These proofs require that we address certain issues of convergence.

2. Reproducing Pairs and Schauder Bases

We begin by considering a sequence Φ that is exact (both complete and minimal). A
standard fact is that Φ = {φk}k≥1 is minimal if and only if there exists a biorthogonal

sequence Φ̃ = {φ̃k}k≥1 that satisfies 〈φj, φ̃k〉 = δjk. Further, an exact sequence has a unique
biorthogonal sequence. (We refer to texts such as [Chr16] or [Hei11] for details.)
We show first that if an exact sequence has a reproducing partner, then it is a Schauder

basis.

Lemma 2.1. If an exact sequence Φ = {φk}k≥1 has a reproducing partner, then Φ is a
Schauder basis for H.

Proof. Suppose that a reproducing partner Ψ = {ψk}k≥1 for Φ did exist. Then

〈f, g〉 =
∑

k≥1

〈f, ψk〉 〈φk, g〉, for all f, g ∈ H. (5)

Since Φ is exact, it has a biorthogonal sequence Φ̃ = {φ̃k}k≥1. Therefore, by equation (5) we
have for every f that

〈f, φ̃j〉 =
∑

k≥1

〈f, ψk〉 〈φk, φ̃j〉 = 〈f, ψj〉.

Consequently ψj = φ̃j for every j. Therefore f =
∑ 〈f, φ̃j〉φk weakly for every f.

Now fix f ∈ H, and suppose that (ck)k≥1 is a scalar sequence such that f =
∑
ckφk weakly.

Then

〈f, φ̃j〉 =
∑

k≥1

ck 〈φk, φ̃j〉 =
∑

k≥1

ckδjk = cj.

Hence there is a unique choice of coefficients for which we have f =
∑
ckφk weakly. There-

fore Φ is a weak Schauder basis for H, and so, by the Weak Basis Theorem (see [Hei11,
Thm. 4.30]), Φ is a strong Schauder basis for H. �

Now we prove that if a sequence Φ that is overcomplete by one element possesses a
reproducing partner, then it must contain a Schauder basis.

Theorem 2.2. Assume that Φ = {φk}k≥0 satisfies the following properties.

(a) Φ′ = {φk}k≥1 is exact in H.

(b) Φ has a reproducing partner Ψ = {ψk}k≥0.

Then Φ′ is a Schauder basis for H.

Proof. Since Φ′ is exact, it has a biorthogonal sequence Φ̃ = {φ̃k}k≥1. Further, since (Ψ,Φ)
is a reproducing pair, equation (4) holds with I = {0, 1, 2, . . . }. If j ≥ 1, then we have for
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all f ∈ H that

〈f, φ̃j〉 =
∞∑

k=0

〈f, ψk〉 〈φk, φ̃j〉 = 〈f, ψ0〉 〈φ0, φ̃j〉 +
∞∑

k=1

〈f, ψk〉 〈φk, φ̃j〉

=
〈
f, 〈φ̃j, φ0〉ψ0

〉
+ 〈f, ψj〉 (by biorthogonality)

=
〈
f, 〈φ̃j, φ0〉ψ0 + ψj

〉
.

Therefore

φ̃j = 〈φ̃j, φ0〉ψ0 + ψj, for every j ≥ 1. (6)

Now assume that ψ0 6= 0, as otherwise the result follows trivially. Since Φ′ is complete,
there is some n ≥ 1 such that 〈φn, ψ0〉 6= 0. Using equation (6) to substitute for ψk, we
compute that if g ∈ H then

〈φn, g〉 =
∞∑

k=0

〈φn, ψk〉 〈φk, g〉

= 〈φn, ψ0〉 〈φ0, g〉 +
∞∑

k=1

〈φn, ψk〉〈φk, g〉

= 〈φn, ψ0〉 〈φ0, g〉 +
∞∑

k=1

〈
φn, φ̃k − 〈φ̃k, φ0〉ψ0

〉
〈φk, g〉 (by equation (6))

= 〈φn, ψ0〉〈φ0, g〉 +
∞∑

k=1

(
〈φn, φ̃k〉 − 〈φ0, φ̃k〉 〈φn, ψ0〉

)
〈φk, g〉

= 〈φn, ψ0〉 〈φ0, g〉 +
∞∑

k=1

(
δkn − 〈φ0, φ̃k〉 〈φn, ψ0〉

)
〈φk, g〉

= 〈φn, ψ0〉 〈φ0, g〉 + 〈φn, g〉 −
∞∑

k=1

〈φ0, φ̃k〉 〈φn, ψ0〉〈φk, g〉.

Therefore,

〈φn, ψ0〉 〈φ0, g〉 = 〈φn, ψ0〉
∞∑

k=1

〈φ0, φ̃k〉 〈φk, g〉.

Since 〈φn, ψ0〉 6= 0, we can cancel that factor and conclude that

φ0 =
∞∑

k=1

〈φ0, φ̃k〉φk weakly. (7)
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Now we will show that Φ′ is a Schauder basis. If g, h ∈ H, then

〈g, h〉 = 〈g, ψ0〉 〈φ0, h〉 +
∞∑

k=1

〈g, ψk〉〈φk, h〉 (reproducing property)

= 〈g, ψ0〉
∞∑

k=1

〈φ0, φ̃k〉 〈φk, h〉 +
∞∑

k=1

〈g, ψk〉 〈φk, h〉 (by equation (7))

=
∞∑

k=1

(
〈g, ψ0〉 〈φ0, φ̃k〉 + 〈g, ψk〉

)
〈φk, h〉

=
∞∑

k=1

〈
g, 〈φ̃k, φ0〉ψ0 + ψk

〉
〈φk, h〉

=
∞∑

k=1

〈g, φ̃k〉 〈φk, h〉. (by equation (6))

Therefore (Φ̃,Φ′) is a reproducing pair, so Lemma 2.1 implies that Φ′ is a Schauder basis for
H. �

3. Weighted Exponentials and Reproducing Partners

3.1. Background. In this section we will apply our results to sequences of weighted expo-
nentials in L2(T), where T = [0, 1). These have the form E(g,Z) = {gen}n∈Z, where en(t) =
e2πint (equivalently, we could consider the trigonometric system {en}n∈Z in a weighted L2

space). A characterization of when E(g,Z) is complete, minimal, exact, a frame, an uncon-
ditional basis, or an orthonormal basis can be found in textbooks such as [Chr16] or [Hei11].
A much deeper classical result due to Hunt, Muckenhoupt, and Wheeden [HMW73] is that
E(g,Z) is a Schauder basis for L2(T) with respect to the ordering Z = {0,−1, 1,−2, 2, . . . }
if and only if |g|2 is an A2(T) weight.
However, those results apply when the index set is the full set of integers. We are interested

in systems that are overcomplete by one or finitely many elements, and hence we deal
with subsequences E(g,Λ) that are indexed by a proper subset Λ of Z. Kazarian [Kaz14]
characterized the functions g and index sets Λ such that E(g,Λ) is complete or minimal
in Lp(T) for 1 ≤ p < ∞. Additional related results are in [HK17; KKSA18; Kaz19]. A
characterization of functions g and finite sets F ⊆ Z such that E(g,Z\F ) is exact in L2(T)
was given by Heil and Yoon [HY12]. Recently, Zikkos [Zik22] proved that the closed span
in L2(γ, β) of the system E(tk,Λ) = {tkeλnt : n ∈ N, k = 1, 2, . . . , µn − 1}, with µi ∈ N,
is equal to the closed span of its unique biorthogonal sequence rΛ = {rn,k : n ∈ N, k =
1, 2, . . . , µn − 1} if some constraints on Λ and the µi are satisfied. Further, in this case each
f ∈ L2(γ, β) admits a Fourier-like series representation

f(t) =
∞∑

n=1

(µn−1∑

k=1

〈f, rn,k〉 tk
)
eλnt,

where the series converges uniformly on closed subintervals of (γ, β).
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3.2. Applications. The following theorem combines a characterization from [HY12] with a
basis result from [Shu18]. We include the proof for completeness.

Theorem 3.1. Let g ∈ L2(T) be such that 1/g /∈ L2(T). If (t − t0)/g(t) ∈ L2(T) for some
t0 ∈ T, then E(g,Z\{k}) is exact for every k ∈ Z. However, there is no ordering of Z\{k}
such that E(g,Z\{k}) is a Schauder basis for L2(T).

Proof. Fix k ∈ Z. We will first show that E(g,Z\{k}) is complete. If f ∈ L2(T) satisfies
〈f, gen〉 = 0 for all n 6= k, then 〈f g, en〉 = 0 for every n 6= k. Since fg ∈ L1(T) and
functions in L1(T) are determined by their Fourier coefficients, it follows that f g = cek for
some constant c, and hence fe−k = c/g. Since 1/g /∈ L2(T), we must have c = 0. Therefore
E(g,Z\{k}) is complete.
Next, for each n 6= k let cn = −e2πi(n−k)t0 , so that en + cnek vanishes at t0. Then the

function

g̃n =
en + cnek

g

belongs to L2(T), and 〈gem, g̃n〉 = 〈em, en + cnek〉 = δmn for m, n 6= k. Therefore {g̃n}n 6=k is
biorthogonal to E(g,Z\{k}), so this sequence is minimal.
Now we will show that E(g,Z\{k}) is not a Schauder basis. Assume that there were some

ordering of Z\{k} such that E(g,Z\{k}) formed a Schauder basis for L2(T). Then there
would exist unique coefficients dn such that

gek =
∑

n 6=k

dngen, (8)

where this sum converges in norm with respect to the specified ordering of Z\{k}. Using the
biorthogonality established earlier, it follows that if m 6= k then

〈gek, g̃m〉 =
∑

n 6=k

dn〈gen, g̃m〉 =
∑

n 6=k

dnδnm = dm.

However, if m 6= k then we also have that

〈gek, g̃m〉 =
〈
gek,

em + cmek
g

〉
= 〈ek, em + cmek〉 = δkm + cm = cm.

Therefore dm = cm for m 6= k. Consequently, since the series in equation (8) converges in
norm, we must have ‖cngen‖2 → 0 as n → ∞. But |cn| = 1, so ‖cngen‖2 = ‖g‖2 for every
n, which is a contradiction. �

Using Theorem 2.2, we obtain the following corollary.

Corollary 3.2. Let g ∈ L2(T) be such that 1/g /∈ L2(T). If there exists some point t0 ∈ T

such that (t− t0)/g(t) ∈ L2(T), then there does not exist any sequence Ψ ⊆ L2(T ) such that(
Ψ, E(g,Z)

)
is a reproducing pair.

Proof. By Theorem 3.1, the sequence E(g,Z) is overcomplete by one element, and if we
remove any element then the resulting sequence is not a Schauder basis. Theorem 2.2
therefore implies that there is no sequence Ψ ⊆ L2(T) such that

(
Ψ, E(g,Z)

)
is a reproducing

pair. �
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For example, the function g(t) = t satisfies the hypotheses of Corollary 3.2, so the system
E(t,Z) does not possess a reproducing partner.

4. Gabor Systems and Reproducing Pairs

4.1. Background. Von Neumann’s claim that the Gaussian Gabor system at the critical
density is complete was proven independently by Perelomov [Per71], Bargmann, Butera,
Girardello, and Klauder [Bar+71], and Bacry, Grossmann, and Zak [BGZ75]. It was later
conjectured by Daubechies and Grossmann that G(ϕ, αZ × βZ) is a frame if and only if
0 < αβ < 1 [DG88; Dau90]. This conjecture was proven in full by Lyubarskii [Lyu92]
and by Seip and Wallstén [Sei92; SW92]. At the critical density, Folland [Fol89] proved
that G(ϕ, αZ × 1/αZ) is not a frame, and is overcomplete by exactly one element. He
further showed that if any single element is removed, the resulting system is exact but not a
Schauder basis. We include an alternative proof of this result in Theorem 4.2. On the topic
of overcompleteness, it was shown in [Bal+03] that every Gabor frame G(g, αZ× βZ), with
αβ < 1, has infinite excess (so is overcomplete by infinitely many elements). Gröchenig and
Stöcker [GS13] showed that if g ∈ L2(R) is a totally positive function of finite type (which
includes the Gaussian function ϕ), then the Gabor system G(g, αZ × βZ) is a frame for
L2(R) if an only if αβ < 1. Recently, Gröchenig proved [Grö23] that if g ∈ L1(R) is totally
positive and αβ ∈ Q, then G(g, αZ× βZ) is a frame for L2(R) if and only if αβ < 1.
The Zak transform is an important tool for studying Gabor systems at the critical density

αβ = 1 (which we reduce to α = β = 1 by a change of variables). Gröchenig [Grö01]
remarks that the Zak transform was first introduced by Gel'fand [Gel50]. As with many
useful tools, it has been rediscovered numerous times and goes by a variety of names. Weil
[Wei64] defined a Zak transform for locally compact abelian groups, and this transform is
often called the Weil-Brezin map in representation theory and abstract harmonic analysis
[Sch84]. Zak rediscovered this transform, which he called the k-q transform, in his work on
quantum mechanics [Zak67]. The terminology “Zak transform” has become customary in
applied mathematics and signal processing. We refer to texts such as [Chr16; Grö01; Hei11]
for details on the Zak transform.
Let Q = [0, 1)2. The Zak transform is the unitary map Z : L2(R) → L2(Q) defined by

Zf(x, ξ) =
∑

j∈Z

f(x− j) e2πijξ, for (x, ξ) ∈ Q. (9)

The series in equation (9) converges unconditionally in the norm of L2(Q). Since Z is unitary,
it preserves properties such as completeness, minimality, being a frame, being a Riesz basis,
and so forth.
If g ∈ L2(R), then the Gabor system generated by g at the critical density is G(g,Z2) =

{MnTkg}k,n∈Z. For k, n ∈ Z, let

Enk(x, ξ) = e2πinx e−2πikξ, for (x, ξ) ∈ R2.

The Zak transform has the property that

Z(MnTkg)(x, ξ) = Enk(x, ξ)Zg(x, ξ) = e2πinx e−2πikξ Zg(x, ξ).
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Consequently, the image of the Gabor system under Z is

Z
(
G(g,Z2)

)
= {EnkZg}(k,n)∈Z2 .

This is a two-dimensional version of the systems of weighted exponentials that we studied
in Section 3. Thus we expect that similar results will hold, although there are some issues
due to the higher-dimensional setting.

4.2. Applications. We will need the following lemma regarding the existence of certain
functions in L2(Q). We will use the following notation for a “cone function” centered at
(x0, ξ0):

ρx0,ξ0(x, ξ) =
√

(x− x0)2 + (ξ − ξ0)2.

Lemma 4.1. Fix (x0, ξ0) ∈ Q and (a, b) ∈ Z2. For (n, k) 6= (a, b), let cnk be the scalar of
unit modulus such that Enk(x0, ξ0) + cnkEab(x0, ξ0) = 0. Then

Enk + cnkEab

ρx0,ξ0

is bounded on Q\{(x0, ξ0)}, and hence belongs to L2(Q).

Proof. If (x, ξ) ∈ Q and (n, k) 6= (a, b), then a direct calculation shows that

|Enk(x, ξ) + cnkEab(x, ξ)| = |En−a,k−b(x− x0, ξ − ξ0)− 1|.
Therefore it suffices to show that if (n, k) 6= (0, 0) then

Enk(x− x0, ξ − ξ0) − 1

ρx0,ξ0(x, ξ)
is bounded on Q\{(x0, ξ0)}. (10)

First we note that

|Enk(x, ξ)− 1| = |e2πi(nx−kξ) − 1| ≤ 2π |nx− kξ|
≤ 2π

(
|nx|+ |kξ|

)

≤ 2π
√
k2 + n2

√
x2 + ξ2.

Therefore, for (n, k) 6= (0, 0) we have that

|Enk(x− x0, ξ − ξ0)− 1| ≤ 2π
√
k2 + n2 ρx0,ξ0(x, ξ),

and equation (10) follows from this. �

Now, we prove an analogue of Theorem 3.1 for Gabor systems at the critical density.

Theorem 4.2. Let g ∈ L2(R) be such that 1/Zg /∈ L2(Q). If there is some point (x0, ξ0) ∈ Q
such that ρx0,ξ0/Zg ∈ L2(Q), then the Gabor system G

(
g,Z2\{(a, b)}

)
is exact in L2(R) for

every pair (a, b) ∈ Z2. However, there is no ordering of Z2\{(a, b)} for which this system is
a Schauder basis for L2(R).

Proof. The proof is similar to the proof of Theorem 3.1, so we only sketch the details. Since
〈f,MnTkg〉L2(R) = 〈Zf,EnkZg〉L2(Q), completeness follows immediately from the assumption
that 1/Zg /∈ L2(Q).
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Observe that
Enk + cnkEab

Zg
=

Enk + cnkEab

ρx0,ξ0

· ρx0,ξ0

Zg
.

This is the product of a bounded function with a square-integrable function, so belongs to
L2(Q). Therefore, since Z is unitary, there is a function g̃nk ∈ L2(R) such that

Z(g̃nk) =
Enk + cnkEab

Zg
.

Since 〈MnTkg, g̃nk〉L2(R) =
〈
EnkZg, Z(g̃nk)

〉
L2(Q)

, it follows that {g̃nk}(n,k) 6=(a,b) is biorthogo-

nal to G
(
g,Z2\{(a, b)}

)
. Therefore that system is minimal.

Finally, by again using the fact that Z is unitary, the proof that G
(
g,Z2\{(a, b)}

)
is not

a Schauder basis is very similar to the argument presented in the proof of Theorem 3.1. �

Next we give the Gabor system equivalent of Corollary 3.2.

Corollary 4.3. Let g ∈ L2(R) be such that 1/Zg /∈ L2(Q). If there is some point (x0, ξ0) ∈ Q
such that ρx0,ξ0/Zg ∈ L2(Q), then G(g,Z2) does not possess a reproducing partner.

Proof. By Theorem 4.2, the Gabor system G(g,Z2) is overcomplete by one element, and if
we remove any one element then the resulting sequence is not a Schauder basis. Theorem
2.2 therefore implies that G(g,Z2) does not have a reproducing partner. �

4.3. The Original Gabor System. We will show that the Gaussian Gabor system at the
critical density does not possess a reproducing partner. We set ϕ(t) = 21/4e−πt2 , and let
Θ = Zϕ be the Zak transform of the Gaussian function. Because ϕ is smooth and decays
quickly, Θ is smooth on Q, and furthermore it has a single zero in Q, at the point (1/2, 1/2).
In fact, we have explicitly (compare [Jan06]) that

Θ(x, ξ) = 21/4
∑

k∈Z

e−π(x−k)2 e2πikξ

= −21/4i e−π(x−1/2)2+πi(ξ−1/2)2 θ1
(
π
(
ξ − 1

2
− i

(
x− 1

2

))
, e−π

)
,

where θ1 is the first Jacobi theta function,

θ1(z, q) = −i
∑

k∈Z

(−1)k q(k+1/2)2 e(2k+1)iz,

see [WW27, Chap. 1]. We will implicitly assume henceforth that q = e−π, and just write
θ1(z) instead of θ1(z, q).

Corollary 4.4. 1/Θ /∈ L2(Q), but
ρ1/2,1/2

Θ
∈ L2(Q). Consequently, G(ϕ,Z2) does not

possess a reproducing partner.

Proof. The Taylor series expansion of Θ about the point (1/2, 1/2) is

Θ(x, ξ) = −21/4π θ ′
1(0)

((
x− 1

2

)
+ i

(
ξ − 1

2

))
+ O

((
x− 1

2

)2
+

(
ξ − 1

2

)2)
,
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where

θ ′
1(0) =

∑

k∈Z

(−1)k (2k + 1) e−π(k+1/2)2 = 2
∞∑

k=0

(−1)k (2k + 1) e−π(k+1/2)2 6= 0.

Therefore, there exist constants C > 0 and 0 < δ < 1/2 such that

|Θ(x, ξ)| ≥ C

√(
x− 1

2

)2
+

(
ξ − 1

2

)2
= C ρ1/2,1/2(x, ξ), if (x, ξ) ∈ Bδ,

whereBδ is the open ball of radius δ centered at (1/2, 1/2). Additionally, since Θ is continuous
and its only zero in Q is at the point (1/2, 1/2), there is some c > 0 such that

|Θ(x, ξ)| ≥ c, if (x, ξ) ∈ Q\Bδ.

Hence, we compute that
∫∫

Q

ρ1/2,1/2(x, ξ)
2

|Θ(x, ξ)|2 dx dξ =

∫∫

Q\Bδ

ρ1/2,1/2(x, ξ)
2

|Θ(x, ξ)|2 dx dξ +

∫∫

Bδ

ρ1/2,1/2(x, ξ)
2

|Θ(x, ξ)|2 dx dξ

≤
∫∫

Q\Bδ

ρ1/2,1/2(x, ξ)
2

c2
dx dξ +

∫∫

Bδ

1

C2
dx dξ

≤ 1

2c2
+
πδ2

C2
< ∞.

This shows that ρ1/2,1/2/Θ is square-integrable on Q. A similar argument can be used to
prove that 1/Θ /∈ L2(Q). Theorem 4.2 therefore implies that G(ϕ,Z2) is overcomplete by
exactly one element, and if any one element is removed then the resulting system is not a
Schauder basis for L2(R). Thus, it follows from Corollary 4.3 that G(ϕ,Z2) does not possess
a reproducing partner. �

5. Overcomplete by Finitely Many Elements

In this section we will generalize Theorem 2.2 to sequences that are overcomplete by n > 1
elements.

5.1. Lemmas. The following lemma will allow us to reduce to the case where the sets of
overcomplete elements {φ0, . . . , φn−1} and {ψ0, . . . , ψn−1} are each linearly independent.

Lemma 5.1. Let φ = {φ0, . . . , φn−1} and ψ = {ψ0, . . . , ψn−1} be subset of H. If either φ or
ψ is linearly dependent, then there exist elements ψ′

k, φ
′
k ∈ H such that

n−1∑

k=0

〈f, ψk〉 〈φk, g〉 =
n−2∑

k=0

〈f, ψ′
k〉 〈φ′

k, g〉, for all f, g ∈ H. (11)

Further, we can choose these functions so that φ′
j ∈ span

k=0,...,n−2
{φk} and ψ′

j ∈ span
k=0,...,n−2

{ψk}.

Proof. Without loss of generality, assume that ψ is linearly dependent, so there exist co-
efficients cj such that ψn−1 =

∑n−2
j=0 cjψj. If we set ψ′

k = ψk and φ′
k = φk + ckφn−1 for

k = 0, . . . , n− 2, then equation (11) holds. �
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We also need a lemma that if {φm}m∈I is complete and {ψ0, . . . , ψn−1} is linearly inde-
pendent in H, then we can create a particular sequence of vectors that is complete in Cn.

Lemma 5.2. Assume vectors ψ0, . . . , ψn−1 are linearly independent in H, and {φm}m≥n is
complete in H. Set

vm =




〈ψ0, φm〉
...

〈ψn−1, φm〉


 , for m ≥ n.

Then {vm}m≥n is complete in Cn, and hence spans Cn.

Proof. Assume that a = (a0, . . . , an−1) ∈ Cn is orthogonal to vm for every m ≥ n. Then for
each m ≥ n we have that

〈n−1∑

j=0

ajψj, φm

〉
=

n−1∑

j=0

aj 〈ψj, φm〉 = vm · a = 0.

Since {φm}m≥n is complete, we therefore have
∑n−1

j=0 ajψj = 0. But {ψ0, . . . , ψn−1} is linearly
independent, so aj = 0 for j = 0, . . . , n − 1, and thus a = 0. Since Cn is finite-dimensional,
it follows that the finite linear span of {vm}m≥n is Cn. �

5.2. Generalization of Theorem 2.2. Now we consider sequences that are overcomplete
by n > 1 elements.

Theorem 5.3. Assume that Φ = {φk}k≥0 satisfies the following properties.

(a) Φ′ = {φk}k≥n is exact in H.

(b) Φ has a reproducing partner Ψ = {ψk}k≥0.

Then Φ′ is a Schauder basis for H.

Proof. By repeatedly applying Lemma 5.1 if necessary, we can assume that {φ0, . . . , φn−1}
and {ψ0, . . . , ψn−1} are each linearly independent.
If j ≥ n, then we have for all f ∈ H that

〈f, φ̃j〉 =
∞∑

k=n

〈f, ψk〉 〈φk, φ̃j〉 +
n−1∑

k=0

〈f, ψk〉 〈φk, φ̃j〉 (reproducing property)

= 〈f, ψj〉 +
n−1∑

k=0

〈f, ψk〉 〈φk, φ̃j〉 (biorthogonality)

=
〈
f, ψj +

n−1∑

k=0

〈φ̃j, φk〉ψk

〉
.

Therefore

φ̃j = ψj +
n−1∑

k=0

〈φ̃j, φk〉ψk, for every j ≥ n. (12)
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Hence, if m ≥ n and g ∈ H, then

〈φm, g〉 =
∞∑

k=n

〈φm, ψk〉 〈φk, g〉 +
n−1∑

k=0

〈φm, ψk〉 〈φk, g〉 (reproducing property)

=
∞∑

k=n

〈
φm, φ̃k −

n−1∑

j=0

〈φ̃k, φj〉ψj

〉
〈φk, g〉 +

n−1∑

k=0

〈φm, ψk〉 〈φk, g〉 (by equation (12))

= 〈φm, g〉 −
∞∑

k=n

n−1∑

j=0

〈φm, ψj〉 〈φj, φ̃k〉 〈φk, g〉 +
n−1∑

k=0

〈φm, ψk〉 〈φk, g〉. (13)

Consequently, if we let vm be as in Lemma 5.2 and let

u =




〈φ0, g〉
...

〈φn−1, g〉


 and wk =




〈φ0, φ̃k〉 〈φk, g〉
...

〈φn−1, φ̃k〉 〈φk, g〉


 ,

then we have for all m ≥ n that

u · vm =
n−1∑

k=0

〈φk, g〉 〈ψk, φm〉 =
n−1∑

k=0

〈φm, ψk〉 〈φk, g〉

=
∞∑

k=n

n−1∑

j=0

〈φm, ψj〉 〈φj, φ̃k〉 〈φk, g〉 (by equation (13))

= lim
N→∞

N∑

k=n

(wk · vm) = lim
N→∞

( N∑

k=n

wk

)
· vm

But {vm}m≥n spans Cn by Lemma 5.2, so this implies that
∑N

k=nwk converges weakly to u

in Cn as N → ∞. Since weak convergence implies strong convergence in finite-dimensional
normed spaces, it follows that u =

∑∞
k=nwk, with convergence in the norm of Cn. We

conclude that u =
∑∞

k=nwk, and therefore

〈φk, g〉 =
∞∑

j=n

〈φk, φ̃j〉 〈φj, g〉, for k = 0, . . . , n− 1. (14)

Finally, in order to show that {φk}k≥n is a Schauder basis, fix any vectors f and g in H.
Then,

〈f, g〉 =
n−1∑

k=0

〈f, ψk〉 〈φk, g〉 +
∞∑

k=n

〈f, ψk〉 〈φk, g〉 (reproducing property)

=
n−1∑

k=0

〈f, ψk〉
∞∑

j=n

〈φk, φ̃j〉 〈φj, g〉 +
∞∑

k=n

〈f, ψk〉 〈φk, g〉 (by equation (14))

=
∞∑

j=n

〈
f,

n−1∑

k=0

〈φ̃j, φk〉ψk

〉
〈φj, g〉 +

∞∑

k=n

〈f, ψk〉 〈φk, g〉
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=
∞∑

j=n

〈f, φ̃j − ψj〉 〈φj, g〉 +
∞∑

k=n

〈f, ψk〉 〈φk, g〉 (by equation (12))

=
∞∑

k=n

〈f, φ̃k〉 〈φk, g〉.

Lemma 2.1 therefore implies that Φ′ is a Schauder basis for H. �

References

[AB12] J. P. Antoine and P. Balazs. “Frames, semi-frames, and Hilbert scales”. Numer.
Funct. Anal. Optim. 33 (2012), pp. 736–769.

[AB11] J. P. Antoine and P. Balazs. “Frames and semi-frames”. J. Phys. A 44 (2011).
Paper 205201.

[AST17] J. P. Antoine, M. Speckbacher, and C. Trapani. “Reproducing pairs of measur-
able functions”. Acta Appl. Math. 150 (2017), pp. 81–101.

[BGZ75] H. Bacry, A. Grossmann, and J. Zak. “Proof of completeness of lattice states in
the kq representation”. Phys. Rev. B 12 (1975), pp. 1118–1120.

[Bal+03] R. Balan, P. G. Casazza, C. Heil, and Z. Landau. “Deficits and excesses of
frames”. Adv. Comput. Math. 18 (2003), pp. 93–116.

[Bar+71] V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder. “On the completeness
of the coherent states”. Rep. Mathematical Phys. 2 (1971), pp. 221–228.

[Cas+08] P. Casazza, S. Dilworth, E. Odell, T. Schlumprecht, and A. Zsk. “Coefficient
quantization for frames in Banach spaces”. J. Math. Anal. Appl. 348.1 (2008),
pp. 66–86.

[Chr16] O. Christensen. An Introduction to Frames and Riesz Bases. Second Edition.
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[Wei64] A. Weil. “Sur certains groupes d’opérateurs unitaires”. Acta Math. 111 (1964),
pp. 143–211.

[WW27] E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. An Intro-
duction to the General Theory of Infinite Processes and of Analytic Functions:
With an Account of the Principal Transcendental Functions. Fourth Edition.
Cambridge University Press, New York, 1927.

[Zak67] J. Zak. “Finite translations in solid-state physics”. Phys. Rev. Lett. 19 (1967),
pp. 1385–1387.

[Zik22] E. Zikkos. “The closed span of some Exponential system EΛ in the spaces
Lp(γ, β), properties of a Biorthogonal family to EΛ in L2(γ, β), Moment prob-
lems, and a differential equation of Carleson” (2022). Preprint.

(L. Hart) School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332,
USA

Email address : lhart31@gatech.edu

(C. Heil) School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332,
USA

Email address : heil@math.gatech.edu

(I. Katz) School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332,
USA

Email address : ian.katz95@gmail.com

(M. Northington V) School of Mathematics, Georgia Institute of Technology, Atlanta,
GA 30332, USA

Email address : mcnorthington5@gmail.com


	1. Introduction
	2. Reproducing Pairs and Schauder Bases
	3. Weighted Exponentials and Reproducing Partners
	3.1. Background
	3.2. Applications

	4. Gabor Systems and Reproducing Pairs
	4.1. Background
	4.2. Applications
	4.3. The Original Gabor System

	5. Overcomplete by Finitely Many Elements
	5.1. Lemmas
	5.2. Generalization of Theorem 2.2

	References

