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This paper investigates the asymptotic decay of the singular values of compact

operators arising from theWeyl correspondence. The motivating problem is to �nd

su�cient conditions on a symbol which ensure that the corresponding operator

has singular values with a prescribed rate of decay. The problem is approached by

using a Gabor frame expansion of the symbol to construct an approximating �nite

rank operator. This establishes a variety of su�cient conditions for the associated

operator to be in a particular Schatten class. In particular, an improvement of

a su�cient condition of Daubechies for an operator to be trace-class is obtained.

In addition, a new development and improvement of the Calder�on{Vaillancourt

theorem in the context of the Weyl correspondence is given. Additional results of

this type are then obtained by interpolation. c
1997 Academic Press

1. INTRODUCTION

In this paper, we investigate the decay of the singular values of compact

operators on L2(Rn) arising from the Weyl correspondence. The Weyl
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correspondence is a formalism that bijectively associates to any continuous

linear operator L:S(Rn) ! S 0(Rn) a distributional symbol � 2 S 0(R2n).

The Weyl correspondence plays an important role in a variety of contexts,

including quantum mechanics and partial di�erential equations [How80].

Our interest stemmed from recent results in the signal processing litera-

ture, where the decay properties of singular values have been proposed as a

tool to determine the quality of time-frequency �lters [Fla88, HK94, RT93,

RT94]. The motivating problem is to �nd su�cient conditions on the sym-

bol which ensure that the corresponding operator has singular values with

a prescribed rate of decay. Our analysis leads us further to consider when

the corresponding operators are bounded. These questions have a long and

venerable history [Fol89], as does a related question which we do not treat

here: which symbols give rise to positive operators? This latter question

also connects to signal processing applications, where it is related to the

positivity of time-frequency distributions [Jan84].

Let H be a separable Hilbert space and let B(H) be the space of all

bounded operators mapping H into itself. B(H) is a Banach space under

the operator norm k � kB(H). The singular values fsk(L)g1k=1 of a compact

operator L 2 B(H) are de�ned via spectral theory. Since L is compact, the

non-negative operator L�L has a discrete spectrum tending towards zero.

The singular value sk(L) coincides with the square root of the kth largest

eigenvalue of L�L, i.e., sk(L) = �k(L
�L)1=2. Alternatively, since H is a

Hilbert space, the singular values of such a compact operator L coincide

with the approximation numbers of L, i.e.,

sk(L) = ak(L) = inf fkL� TkB(H) : rank(T ) < kg: (1.1)

One way of quantifying the rate of decay of the singular values of a

compact operator L is by determining the `p class to which they belong.

This leads to the de�nition of the Schatten class Ip as the set of all compact

operators L 2 B(H) for which the sequence of singular values fsk(L)g is

in `p. In particular, I1 is the space of all compact operators on H. Other

useful identi�cations are that I1 is the space of all trace-class operators on
H and that I2 is the space of all Hilbert{Schmidt operators on H. The

Schatten class Ip is a Banach space under the norm

kLkIp = kfsk(L)gk`p =

8>><
>>:

�X
k

sk(L)
p

�1=p

; 1 � p <1;

sup
k

sk(L) = s1(L) = kLkB(H); p =1:

The singular values of two compact operators L1, L2 obey the inequality

sk+`+1(L1+L2) � sk+1(L1)+ s`+1(L2) [DS88, p. 1089]. As a consequence,
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the following re�nement of Eq. (1.1) holds for Hilbert{Schmidt operators

L 2 I2: X
k>N

sk(L)
2 � inf fkL� Tk2I2 : rank(T ) � Ng: (1.2)

This inequality will play a key role in our later estimates.

Useful variants of the Schatten classes are obtained by replacing the `p

norm of the singular values by the Lorentz space `p;q quasi-norm. We de�ne

Ip;q to be the space of all compact operators L 2 B(H) such that

kLkIp;q = kfsk(L)gk`p;q =

8>><
>>:

�X
k

�
k
1
p�

1
q sk(L)

�q�1=q

; 1 � q <1;

sup
k

k1=p sk(L); q =1;

is �nite. Although k � kIp;q is only a quasi-norm and not a norm, the

spaces Ip;q have been well-studied, and their behavior under interpolation

is known.

A recurring theme in the study of integral operators L is that the rate

of decay of the singular values can be controlled by the smoothness and

decay of the associated kernel k. This theme has a rich history, much of

which has been recorded in the books by K�onig [K�on86] and Pietsch [Pie87].

A typical strategy in this type of problem is to approximate the kernel k

of L by a suitable kernel kN whose associated operator LN is of �nite

rank. Equations (1.1) or (1.2) then yield a bound on the singular values

of L, provided that the error between the operator L and its �nite rank

approximation LN is controlled by the error between the kernel k and its

approximation kN . Such an approach can be used to prove that a compact

operator is within a particular Schatten p-class.

In the Weyl pseudodi�erential calculus, the operator L is de�ned via

its symbol � instead of its kernel k. We review the fundamentals of the

Weyl correspondence in Section 2. Operators with reasonable symbols may

give rise to kernels that are de�ned only in the sense of distributions and

conversely. As a consequence, it is natural to attempt the approximation

strategy outlined above on the symbol side instead of the kernel side. This

is the approach we take in this paper. We expand the symbol � in terms

of a Gabor frame generated by a Gaussian function and use the fact that

the partial sums of this expansion are naturally associated to �nite rank

operators. Frames, Gabor frames, and frame expansions of the symbol �

are covered in Section 3. This method enables us to establish a variety of

su�cient conditions for an operator to be in a particular Schatten class.

These conditions involve the rate of decay of the L2-norm of the symbol �

and its Fourier transform �̂ outside of large balls Br centered at the origin.

Our main result in this direction is the following.
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Theorem 1.1. If � 2 L2(R2n) then there exist constants ", C1, C2 > 0

such that the singular values of the Weyl transform L� satisfy

X
k>N

sk(L�)
2 � C1 S"(C2N

1=2n); (1.3)

for every N > 0, where

S"(r) = k� ��BC
r
k2L2+k�̂ ��BC

r
k2L2+e�"r

2 �
k� ��Br

k2L2+k�̂ ��Br
k2L2

�
: (1.4)

In particular,

s2k(L�)
2 � C1 S"(C2 k

1=2n)

k
: (1.5)

A Gabor system has the form fe2�iqx �(x + p)g(p;q)2�, where � is a

lattice in R2n and � 2 L2(Rn). Such a system of time-frequency shifts of

� is uniquely suited to analysis in the context of the Weyl correspondence.

However, no such Gabor system can be a basis if � is simultaneously well-

localized in both time and frequency. Our technique speci�cally requires

such simultaneous localization, and in fact we take � to be a Gaussian

function. However, by taking the lattice � with su�ciently high density,

this Gabor system is a frame, i.e., there is a norm equivalence between kfkL2
and kfhf; e2�iqx �(x + p)igk`2 . Moreover, there is a basis-like expansion

of f in terms of the frame elements. The expansion coe�cients are not

necessarily unique, but this nonuniqueness is irrelevant to our purposes.

The proof of Theorem 1.1 is given in Section 4, and implications of

this result are discussed in Section 5. For example, Theorem 1.1 leads

immediately to an improvement of a su�cient condition of Daubechies for

an operator to be trace-class [Dau80], namely, we show that L� 2 I1 if

both � and �̂ lie in a Sobolev space Hn+", rather than H2n+". In fact, we

show that L� 2 I 2n
2n+" ;1

if �, �̂ 2 Hn+".

In Section 6, we again employ Gabor frame expansions of the symbol

to give a new development and improvement of the Calder�on{Vaillancourt

theorem in the context of the Weyl correspondence. The usual Calder�on{

Vaillancourt theorem states that L� is a bounded operator on L
2(Rn) if � 2

C2n+1(R2n), i.e., � and all derivatives of order 2n+ 1 or less are bounded,

continuous functions on R2n. We obtain the following improvement, stated

in terms of the H�older{Zygmund classes �s(R2n).

Theorem 1.2. If � 2 �s(R2n) with s > 2n, then L� is a bounded operator

on L2(Rn).
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Finally, in Section 7 we use interpolation to obtain an extension of

Theorem 1.2.

Notation. The usual dot product of two points x, y 2 Rn is denoted

by a simple juxtaposition, i.e., xy = x1y1 + � � �+ xnyn. The length of x is

jxj =
p
x2 =

p
xx. The cardinality of a �nite set F is jF j, and the Lebesgue

measure of a subset E � Rn is also denoted jEj. The characteristic function
of E � Rn is �E , and the complement of E is EC. The ball in Rn of radius

r centered at x is Br(x). When x = 0 we write Br = Br(0). The translation

of a function f by y 2 Rn is �yf(x) = f(x� y).

The space Lp(Rn) consists of complex-valued functions f on Rn with

norm kfkLp =
�R
jf(x)jp dx

�1=p
. The inner product of f , g 2 L2(Rn) is

hf; gi =
R
f(x) g(x)dx. C(Rn) is the space of bounded, continuous func-

tions on Rn. Cc(R
n) is the space of continuous functions with compact

support. C0(R
n) is the space of continuous functions on Rn vanishing

at in�nity. Ck(Rn) is the space of bounded, continuous functions pos-

sessing bounded, continuous derivatives up to order k. S(Rn) denotes

the Schwartz space of all in�nitely di�erentiable functions on Rn decaying

rapidly at in�nity, and S 0(Rn) is its topological dual, the space of tempered

distributions.

The Fourier transform of f 2 L1(Rn) is f̂(
) = Ff(
) =
R
f(x) e�2�i
x dx;

the inverse Fourier transform is �f(
) = F�1f(
) = f̂(�
). The Fourier

transform maps S(Rn) onto itself, and extends to S 0(Rn) by duality.

The Sobolev space Hs(Rn) is de�ned by the norm

kfk2Hs = kf̂(
) (1 + 
2)s=2k2L2 =

Z
jf̂(
)j2 (1 + 
2)s d
:

The H�older{Zygmund class are denoted by �s(Rn). For noninteger s >

0, say s = k + ", �s(Rn) consists of functions f 2 Ck(Rn) such that for

each multi-index � with order j�j = k, the derivative f (�) satis�es a H�older

condition jD�f(x)�D�(y)j � K jx� yj".
The Besov spaces on Rn are denoted Bs

p;q(R
n). We have �s(Rn) =

Bs
1;1(Rn) when s > 0 and Hs(Rn) = Bs

2;2(R
n) when s > 0.

2. BACKGROUND: THE WEYL CORRESPONDENCE

In Sections 2.1{2.3 we review some basic facts on the Weyl correspon-

dence as a tool for constructing pseudodi�erential operators. We follow the

book of Folland [Fol89] closely.
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2.1. The Schr�odinger Representation

The Schr�odinger representation � of the Heisenberg group Hn = Rn �
R
n �R is de�ned by

�(p; q; t)f(x) = e2�it e�ipq e2�iqx f(x+ p):

Each �(p; q; t) is a unitary mapping of L2(Rn) onto itself. The composition

of two such operators follows the rule

�(p; q; t) �(p0; q0; t0) = �(p+ p0; q + q0; t+ t0 + 1
2
(pq0 � p0q)):

This rule determines the group law on Hn. In many considerations the

t-variable is unimportant, so for � = (p; q) 2 R2n we de�ne

�(�)f(x) = �(p; q)f(x) = �(p; q; 0)f(x) = e�ipq e2�iqx f(x+ p):

We refer to �(�)f = �(p; q)f as a time-frequency shift of f . In particular,

�(p; 0)f = ��pf is a translate of f . We have the formula (�(p; q)f)^ =

�(�q; p)f̂ .

2.2. The Ambiguity Function and the Wigner Distribution

The (cross-)ambiguity function, or Fourier-Wigner transform, of

f , g 2 L2(Rn) is

A(f; g)(p; q) = h�(p; q)f; gi

=

Z
e�ipq e2�iqx f(x+ p) g(x)dx

=

Z
e2�iqx f(x+ p

2
) g(x� p

2
) dx:

Regarded as is a bilinear mapping L2(Rn) � L2(Rn) ! L2(R2n), the

ambiguity function extends in the obvious way to a linear mapping ~A

on the tensor product L2(Rn) 
 L2(Rn), which is naturally isomorphic

to L2(R2n). In particular, ~A(F )(p; q) =
R
e2�iqx F (x + p

2
; x � p

2
) dx is a

unitary mapping of L2(R2n) onto itself which also maps S(R2n) onto itself

and extends to a continuous bijection of S 0(R2n) onto itself. Analogues of

these facts transfer back to A on L2(Rn)� L2(Rn), S(Rn)� S(Rn), and

S 0(Rn)� S 0(Rn).

The (cross-)Wigner distribution of f , g 2 L2(Rn) is the Fourier trans-

form of the ambiguity function of f and g,
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W (f; g)(�; x) = A(f; g)^(�; x)

=

ZZ
A(f; g)(p; q) e�2�i(p�+qx) dp dq

=

Z
e�2�ip� f(x+ p

2
) g(x� p

2
) dp:

As with the ambiguity function, the Wigner distribution extends from a

bilinear map W :L2(Rn) � L2(Rn) ! L2(R2n) to a unitary map ~W of

L2(R2n) onto itself which is also a continuous bijection of S(R2n) and

S 0(R2n) onto themselves. Transferring these facts back to W , and combin-

ing them with other elementary calculations, we obtain the following useful

facts about the Wigner distribution.

Proposition 2.1. Let f , g 2 L2(Rn) and let a, b, c, d 2 Rn. Then

(a) W (f; g) 2 L2(R2n), with kW (f; g)kL2 = kfkL2 kgkL2.
(b) W (f; g) 2 C0(R

2n), and kW (f; g)kL1 � kfkL2 kgkL2.
(c) W (g; f) =W (f; g).

(d) W (f̂ ; ĝ)(�; x) =W (f; g)(x;��).
(e) W (�(a; b)f; �(c; d)g)(�; x)

= e�i(bc�ad) e2�i((a�c)�+(b�d)x)W (f; g)(� � b+d
2
; x+ a+c

2
).

(f) (Moyal's Identity)


W (f1; g1); W (f2; g2)

�
= hf1; f2i hg2; g1i.

Let us de�ne the linear transformation M :R2n � R2n ! R
4n by the

formula

M(�; �) = M(�1; �2; �1; �2) =
�
��2+�2

2
; �1+�1

2
; �1� �1; �2� �2

�
(2.1)

for � = (�1; �2), � = (�1; �2) 2 R
4n. Then the identity in Proposi-

tion 2.1(e) can be restated

W (�(�)f; �(�)g) = �(M(�; �))W (f; g); (2.2)

where � on the left-hand side of (2.2) is the Schr�odinger representation of

H
n while � on the right-hand side is the Schr�odinger representation of H2n.

2.3. The Weyl Correspondence

A continuous linear operator L:S(Rn)! S 0(Rn) is a pseudodi�erential

operator. TheWeyl correspondence employs the Wigner distribution to de-

�ne a 1-1 correspondence between tempered distributions � 2 S 0(R2n) and

pseudodi�erential operators L�:S(Rn) ! S 0(Rn). The distribution � is
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the symbol of the operator L�, and L� is theWeyl transform of �. The Weyl

transform L� is de�ned implicitly by the equation

hL�f; gi = h�;W (g; f)i

= h�;W (f; g)i

=

ZZ
�(�; x)W (f; g)(�; x) d�dx; (2.3)

or explicitly in kernel form by

L�f(x) =

ZZ
�
�
�;
x+ y

2

�
e2�i(x�y)� f(y) dy d�:

Of course, operators L� arising from distributional symbols � 2 S 0(R2n)

will be de�ned a priori only on Schwartz-class functions and will take

values in the space of tempered distributions S 0(Rn). It is therefore natural

to ask when a given symbol is associated with a bounded operator on

L2(Rn). The following theorem summarizes some known facts along these

lines.

Theorem 2.2. Given 1 � p � 2, let p0 satisfy 1
p
+ 1

p0
= 1. Then the

Weyl correspondence is a continuous mapping of symbols � 2 Lp(R2n) to

operators L� 2 Ip0 , i.e., there exists a constant Cp so that

8� 2 Lp(R2n); kL�kIp0 � Cp k�kLp :

Moreover, for p = 2 the Weyl correspondence is a unitary bijection of

L2(R2n) onto I2. In particular,

8� 2 L2(R2n); kL�kI2 = k�kL2 :

Observe that Theorem 2.2 implies

� 2 L1(R2n) =) L� is compact;

� 2 L2(R2n) () L� is Hilbert{Schmidt:

The proof of Theorem 2.2 for the case p = 1 can be found in [Fol89]. The

case p = 2 is due to Pool [Poo66]. The case 1 < p < 2 is due to Howe

[How80], and follows by interpolating between the p = 1 and p = 2 cases.
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3. FRAMES AND APPROXIMATION OF SYMBOLS

In Sections 3.1{3.3 we review basic properties of frames, and show how

a Gabor frame expansion of the symbol � can be used to construct �nite-

rank approximations to the Weyl transform L�.

3.1. Frames

Let H be a separable Hilbert space with norm k � k and inner product

h�; �i, and let I be a countable index set. Then a sequence ffigi2I of ele-

ments of H is a frame for H if there exist constants A, B > 0 so that the

following approximate Plancherel formula holds:

8 f 2 H; A kfk2 �
X
i

jhf; fiij2 � B kfk2: (3.1)

The numbers A, B are frame bounds. The frame is tight if A = B. The

frame is exact if it ceases to be a frame when any one of its elements is

deleted.

Frames were introduced by Du�n and Schae�er [DS52] in the context

of nonharmonic Fourier series. Frame analysis has seen a recent resurgence

with the advent of wavelet theory and the continuing development of

Gabor analysis. Expository treatments of frames can be found in [HW89],

[Dau92].

The class of exact frames for H coincides with the class of Riesz bases for

H, which coincides with the class of bounded unconditional bases for H.

Inexact frames are not bases, yet lead to basis-like expansions of elements

of the Hilbert space in terms of the frame elements. The utility of inexact

frames lies in the fact that it is sometimes possible to construct inexact

frames whose elements satisfy some desirable property even though this

property is denied to the elements of any Riesz basis for H. Such is the

case for the speci�c Gabor frames for L2(Rn) that we will consider in

Section 3.2.

The following result summarizes useful properties of frames.

Proposition 3.1. Let ffigi2I be a frame for H with frame bounds A, B.

(a) The coe�cient mapping V :H ! `2 de�ned by V f = fhf; fiig is

continuous and injective, with kV k2 � B.

(b) The adjoint V �: `2 ! H is the continuous map de�ned by

V �fcig =
P
cifi, and satis�es kV �k2 � B. In particular,

8 fcig 2 `2;





X
i

cifi






2

� B
X
i

jcij2: (3.2)
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(c) The frame operator Sf = V �V f =
P
hf; fii fi is a positive, contin-

uous, and invertible mapping of H onto itself. The frame de�nition

(3.1) is equivalent to the property AI � S � BI.

(d) De�ne ~fi = S�1fi. Then the dual frame f ~fig is a frame for H with

frame bounds B�1, A�1.

(e) The following series converge unconditionally in the norm of H:

8 f 2 H; f =
X
i

hf; ~fii fi =
X
i

hf; fii ~fi: (3.3)

The frame is exact if and only if Eq. (3.3) is the unique representa-

tion of f as f =
P
ci fi or f =

P
di ~fi.

We also require the following facts regarding frames.

Lemma 3.2. Let ffigi2I be a frame for H with frame bounds A, B, frame

operator S, and dual frame f ~figi2I .
(a) If T :H ! H is a continuous bijection then fTfigi2I is a frame for

H with frame bounds A kT�1k�2, B kTk2, frame operator TST �,

and dual frame f(T �)�1 ~figi2I .
(b) ffi 
 fjg(i;j)2I�I is a frame for H 
H with frame bounds A2, B2,

frame operator S 
 S, and dual frame f ~fi 
 ~fjg(i;j)2I�I .

Proof. (a) First note that TST � is a continuous, self-adjoint bijection of H

onto itself, satisfying TST �f =
P
hf; TfiiTfi, (TST �)�1(Tfi) = (T �)�1 ~fi

and hTST �f; fi = hS(T �f); (T �f)i. Therefore A kT �fk2 � hTST �f; fi �
B kT �fk2. The result then follows from the calculation kT�1k�1 kfk =

k(T �)�1k�1 kfk � kT �fk � kT �k kfk = kTk kfk.
(b) Since S is a positive, invertible operator, it has an invertible square

root S1=2. We compute f = S�1=2SS�1=2f =
P
hf; S�1=2fiiS�1=2fi.

Therefore, by Proposition 3.1(c), fS�1=2fig is a tight frame for H with

frame bound 1.

Note that S1=2
S1=2 is a continuous, self-adjoint bijection of H
H onto

itself, and (S1=2
S1=2)�1 = S�1=2
S�1=2. If F =
P`

k=1 (gk
hk) 2 H
H
is any �nite linear combination of simple tensors, thenX
i;j



F; (S�1=2 
 S�1=2)(fi 
 fj)

�
(S�1=2 
 S�1=2)(fi 
 fj)

=
X̀
k=1

�X
i

hgk; S�1=2fiiS�1=2fi
�


�X

j

hhk; S�1=2fjiS�1=2fj
�

=
X̀
k=1

(gk 
 hk) = F:
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This extends by continuity to all F 2 H 
 H. Therefore f(S�1=2 

S�1=2)(fi 
 fj)g is a tight frame for H 
 H with frame bound 1. By

part (a), ffi 
 fjg is therefore a frame for H 
 H with frame bounds

kS�1=2 
 S�1=2k�2, kS1=2 
 S1=2k2. Since kS�1=2 
 S�1=2k � kS�1=2k2 �
A�1 and kS1=2 
 S1=2k � kS1=2k2 � B, the result follows. �

3.2. Gabor Frames

A current survey of Gabor theory and related issues can be found in

[BHW95].

A subset � � R
2n is a rectangular lattice if it has the form � =

a1Z� � � � � a2nZ. The density of � is d(�) = 1=(a1 � � �a2n). The lattice is
square if a1 = � � � = a2n.

If g 2 L2(Rn) and � � R
2n is a rectangular lattice then the Gabor

system generated by g and � is the collection f�(�)gg�2� of time-frequency

shifts of g along �. Gabor's fundamental work [Gab46] proposed using a

Gabor system generated by the Gaussian function

�(x) = 2n=4e��x
2

and a lattice � with density d(�) = 1. This Gabor system is complete in

L2(Rn), but it is not a frame. In fact, when the lattice � has density 1,

any Gabor system that is a frame must be an exact frame, and the Balian{

Low theorem implies that the generator g of any Gabor system that is an

exact frame cannot be well-localized in both time and frequency. Seip and

Wallst�en [Sei92], [SW92] established, for the one-dimensional case n = 1,

that the Gaussian function � will generate a Gabor frame for L2(Rn) for

any lattice � with density d(�) > 1. Such a Gabor system must be inexact.

Since L2(Rm+n) = L2(Rm)
 L2(Rn), this construction extends to higher

dimensions by Lemma 3.2(b).

Theorem 3.3. If � is a rectangular lattice in R2n with density d(�) > 1,

then the Gabor system f�(�)�g�2� is a frame for L2(Rn).

For simplicity of notation, we will write

�� = �(�)�:

We will let A�, B� denote the frame bounds for the frame f��g�2� in

L2(Rn).

The dual frame of the Gabor frame f��g�2� is itself a Gabor frame

f~��g�2� using the same lattice but generated by a di�erent function ~� 2
L2(Rn). In fact, ~� = S�1�, where S is the frame operator for f��g�2�.
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By Lemma 3.2(b), f��(x)��(y)g(�;�)2� forms a frame for L2(R2n) =

L2(Rn)
 L2(Rn), where � = �� �. By the discussion in Section 2.2, the

Wigner distribution of �� and �� satis�es W (��; ��) = ~W (��(x)��(y)),

where ~W is a unitary mapping of L2(R2n) onto itself. Since frames are

preserved by unitary mappings, we have the following fact.

Lemma 3.4. Let � be a rectangular lattice in R2n with density d(�) > 1.

De�ne

��;� = W (��; ��) and ~��;� = W (~��; ~��)

and set

� = �� �:

Then f��;�g(�;�)2� is a frame for L2(R2n) with frame bounds A2
�, B

2
�,

dual frame f~��;�g(�;�)2�, and dual frame bounds B�2� , A�2� .

For later use, de�ne

�(�; x) = �0;0(�; x) = W (�; �)(�; x) = 2n e�2�(�
2+x2):

Then, by Eq. (2.2),

��;� = W (��; ��) = �(M(�; �))�: (3.4)

Note that while �� denotes a time-frequency shift of � 2 L2(Rn) by � 2
R
2n, the notation ��;� describes a time-frequency shift of � 2 L2(R2n) by

M(�; �) 2 R4n.

3.3. Approximation of Symbols

Given any symbol � 2 L2(R2n), we can use Proposition 3.1(e) to expand

� in terms of the frame f��;�g:

� =
X

(�;�)2�

h�;��;�i ~��;�: (3.5)

This series converges unconditionally in L2-norm. Given f , g 2 L2(Rn), we

can therefore perform the following calculation on the Weyl transform L�:

hL�f; gi = h�;W (g; f)i

=
X

(�;�)2�

h�;��;�i h~��;�;W (g; f)i

=
X

(�;�)2�

h�;��;�i


W (~��; ~��); W (g; f)

�

=
X

(�;�)2�

h�;��;�i hf; ~��i h~��; gi; (3.6)
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the last equality following from Moyal's identity (Proposition 2.1(f)).

Therefore

L�f =
X

(�;�)2�

h�;��;�i hf; ~��i ~��: (3.7)

The partial sums formed by truncating the expansions in Eqs. (3.5) and

(3.7) can be used to construct �nite-rank approximations of L�. We design

the truncation to facilitate estimates that we will make in later sections.

Let Br denote the ball in R
2n of radius r centered at the origin, and de�ne

�N = � \ M�1(BN �BN ):

Then set

�N =
X

(�;�)2�N

h�;��;�i ~��;�: (3.8)

Since f��;�g is not an exact frame, Eq. (3.8) is not the frame expansion of

�N . However, a calculation similar to the one in Eq. (3.6) shows that the

Weyl transform L�N of �N is given by

L�N f =
X

(�;�)2�N

h�;��;�i hf; ~��i ~��: (3.9)

This L�N has �nite rank, which we estimate as follows.

Lemma 3.5. There exists a constant R so that rank(L�N ) � RN2n for

every N .

Proof. From Eq. (3.9) we have rank(L�N ) � jf� 2 R2n : (�; �) 2 �Ngj.
By de�nition, �N �M�1(BN �BN ) � B2N �B2N , so f� 2 R2n : (�; �) 2
�Ng � � \ B2N . The result then follows from the observation that

lim
N!1

j� \ B2N j
jB2N j

= d(�);

and the fact that the volume of B2N is jB2N j = (2N)2n jB1j. �

By Eq. (1.2), the singular values of L� are controlled by the error between

L� and L�N in Hilbert{Schmidt norm. By Theorem 2.2, this is controlled in

turn by the error between � and �N in L2-norm, which is further controlled

by properties of the frame expansion of �. Speci�cally, we have the following

result, which will form the key step leading to Theorem 1.1.
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Lemma 3.6. X
k>rank(L�N )

sk(L�)
2 � A�2�

X
(�;�)2�n�N

jh�;��;�ij2: (3.10)

Proof. Note that � � �N =
P

(�;�)2�n�N
h�;��;�i ~��;�. Although this is

not the frame expansion of � � �N , Eq. (3.2) allows us to estimate the

norm of this quantity in terms of the coe�cients h�;��;�i. Since f~��;�g
has frame bounds B�2� , A�2� , we compute:

X
k>rank(L�N )

sk(L�)
2 � kL� � L�Nk2I2 by (1.2)

= k� � �Nk2L2 by Theorem 2.2

=






X

(�;�)2�n�N

h�;��;�i ~��;�






2

L2

� A�2�

X
(�;�)2�n�N

jh�;��;�ij2 by (3.2): �

The estimate in Eq. (3.10) will be crucial in providing bounds on the

rate of decay of the singular values of L�.

4. SINGULAR VALUES OF L�

We will prove Theorem 1.1 in this section. Our main task is to estimate

the quantity on the right-hand side of Eq. (3.10). By Eq. (3.4) and the fact

that the linear transformationM de�ned in Eq. (2.1) is invertible, we have

X
(�;�)2�n�N

jh�;��;�ij2 =
X

(�;�)2�n�N

jh�; �(M(�; �))�ij2

=
X

(�;�)2M(�n�N )

jh�; �(�; �)�ij2: (4.1)

We assume now that the lattice � is square. Then

M(�N ) = M(�) \ (BN �BN ) and M(�) � 1
2
� = 1

2
�� 1

2
�;

so

M(� n �N ) � 1
2
� \ (BN �BN )

C =
�
1
2
� \ BC

N

�
�
�
1
2
� \ BC

N

�
:



440 HEIL, RAMANATHAN, AND TOPIWALA

Therefore,

X
(�;�)2M(�n�N )

jh�; �(�; �)�ij2

�
X

�2 1
2
�\BC

N

X
�2 1

2
�\BC

N

jh�; �(�; �)�ij2

�
X

�2 1
2
�\BC

N

X
�2 1

2
�

jh�; �(�; �)�ij2 +
X

�2 1
2
�\BC

N

X
�2 1

2
�

jh�; �(�; �)�ij2:
(4.2)

We now estimate each of the sums in Eq. (4.2). First, note that

�(�; x) = 2n e�2�(�
2+x2) and �̂(p; q) = e�

�
2
(p2+q2):

De�ne

G(�; x) = 2n=2 e��(�
2+x2) and H(p; q) = e�

�
4
(p2+q2);

so that

G2 = � and H2 = �̂

and

�(�; �)� = �(�; �)G � ���G and �(�; �)�̂ = �(�; �)H � ���H;

where �� is the translation operator ��f(�) = f(�� �).

A Gabor system generated by any Gaussian function on any arbitrary

rectangular lattice is always a Bessel sequence, i.e., at least an upper frame

bound is satis�ed, even if there is no lower frame bound. Let BG and BH

denote the upper frame bounds for the Bessel sequences f�(�; �)Gg(�;�)2 1
2
�

and f�(�; �)Hg(�;�)21
2
�, respectively. Then we can make the following ini-

tial estimates.

Lemma 4.1.

(a) If � 2 1
2
� then

P
�2 1

2
� jh�; �(�; �)�ij2 � BG k� � ���Gk2L2 .

(b) If � 2 1
2
� then

P
�2 1

2
� jh�; �(�; �)�ij2 � BH k�̂ � ��Hk2L2 .

Proof. (a) Suppose � 2 1
2
�. Then, since G is real-valued, we can compute

X
�2 1

2
�

jh�; �(�; �)�ij2 =
X
�2 1

2
�

jh� � ���G; �(�; �)Gij2

� BG k� � ���Gk2L2 :
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(b) Now suppose that � 2 1
2
�. ThenX

�2 1
2
�

jh�; �(�; �)�ij2 =
X
�2 1

2
�

jh�̂; �(��; �)�̂ij2

=
X
�2 1

2
�

jh�̂ � ��H; �(��; �)Hij2

� BH k� � ��Hk2L2 : �

Lemma 4.2. There exist constants ", C1, C2 > 0 such that

(a)
P

�2 1
2
�\BC

N
k�����Gk2L2 � C1 k���BC

N=2
k2L2+C2 e

�"N2 k���BN=2
k2L2 ,

(b)
P

�2 1
2
�\BC

N
k�̂���Hk2L2 � C1 k�̂��BC

N=2
k2L2+C2 e

�"N2 k�̂��BN=2
k2L2 .

Proof. We prove only (a) as (b) is similar. De�ne

GN =
X

�2 1
2
�\BC

N

(���G)
2 =

X
�2 1

2
�\BC

N

����:

By Tonelli's Theorem,X
�2 1

2
�\BC

N

k� � ���Gk2L2 =

ZZ
j�(�; x)j2GN (�; x) d� dx: (4.3)

SinceG is a Gaussian function, we have C1 = sup kGNkL1 <1. Therefore,ZZ
BC
N=2

j�(�; x)j2GN (�; x) d� dx � C1 k� � �BC
N=2

k2L2 : (4.4)

Further,ZZ
BN=2

j�(�; x)j2GN (�; x) d� dx � kGN � �BN=2
kL1 k� � �BN=2

k2L2 : (4.5)

However, if (�; x) 2 BN=2 and j�j � N then j(�; x)� �j � j�j �N=2, so

GN (�; x) =
X

�2 1
2
�\BC

N

2n e�2�((�;x)��)
2

� 2n
X

�2 1
2
�\BC

N

e�2�(j�j�N=2)
2

� C2

Z
jxj�N=2

e�2�x
2

dx

� C2 e
��n

4
N2

: (4.6)

The result follows upon combining (4.3){(4.6). �
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We combine these lemmas to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Combining Lemma 3.6, Eqs. (4.1) and (4.2), and

Lemmas 4.1 and 4.2, we see that there exist constants " and C so that

X
k>rank(L�N )

sk(L�)
2 � C S"(N=2);

where S"(r) is de�ned in Eq. (1.4). By Lemma 3.5 there exists a constant

R so that rank(L�N ) � RN2n for every N . Therefore

X
k>RN2n

sk(L�)
2 � C S"(N=2): (4.7)

Equation (1.3) then follows upon reparametrizing Eq. (4.7).

Finally, the estimate in Eq. (1.5) follows from Eq. (1.3) because the

singular values are arranged in decreasing order, so

N s2N (L�)
2 �

2NX
k=N+1

sk(L�)
2 � C1 S"(C2N

1=2n): �

5. SCHATTEN-CLASS APPLICATIONS

In this section we apply Theorem 1.1 to derive conditions on the symbol

� which imply that the Weyl transform L� lies in a particular Schatten

class.

Recall that the Sobolev space Hs(R2n) is de�ned by the norm

kfk2Hs = kf̂(p; q) (1+ p2+ q2)s=2k2L2 =

ZZ
jf̂(p; q)j2 (1+ p2 + q2)s dp dq:

In particular, Hs(R2n) � L2(R2n) when s � 0. Let F denote the Fourier

transform operator, i.e., Ff = f̂ , and let �f = F�1f . Then Hs(R2n) \
FHt(R2n) is a Banach space with norm

kfks;t = max fkfkHs ; k �fkHtg:

Theorem 1.1 leads immediately to the following result bounding the de-

cay of the singular values of L� in terms of the Hs \ FHt norm of the

symbol �.

Proposition 5.1. Assume � 2 Hs(R2n) \ FHt(R2n) with 
 =

min fs; tg � 0. Then there exists a constant C > 0 such that

8 k > 0; sk(L�) � C k�ks;t k�


2n�

1
2 :
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Proof. Since � 2 L2(R2n), Theorem 1.1 implies that there exist constants

", C1, C2 > 0 such that s2k(L�)
2 � C1 S"(C2 k

1=2n)=k. Now, if r > 0, then

(1 + r2)t
ZZ

BC
r

j�(�; x)j2 d� dx �
ZZ

BC
r

j�(�; x)j2 (1 + �2 + x2)t d� dx

� k��k2Ht � k�k2s;t:

Similarly,

(1 + r2)s
ZZ

BC
r

j�̂(p; q)j2 dp dq � k�k2s;t:

Therefore,

S"(r) �
k�k2s;t
r2s

+
k�k2s;t
r2t

+ 2e�"r
2 k�k2L2 � C k�k2s;t r�2


for some constant C independent of r. Hence

s2k(L�)
2 � C k�k2s;t

C1 (C2 k
1=2n)�2


k
= C C1 C

�2

2 k�k2s;t k�



n�1:

The result then follows upon reindexing and taking square roots. �

We next give a version of Proposition 5.1 that is \rotationally invariant

in phase space." Let L denote the Hamiltonian for the simple harmonic

oscillator on R2n, i.e.,

L = � 1

4�2
d2

d�2
� 1

4�2
d2

dx2
+ �2 + x2:

Since L is a positive, self-adjoint operator, we can de�ne a Hilbert space

Hs(R2n) by the norm

k�kHs = hLs�; �i1=2:

We clearly have H1(R2n) = H1(R2n) \ FH1(R2n). In fact, this extends

to all values of s.

Lemma 5.2. If s � 0 then Hs(R2n) = Hs(R2n) \ FHs(R2n), with equiv-

alence of norms.

Applying this fact to Proposition 5.1 for the case s = t gives the following

result.
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Proposition 5.3. If � 2 Hs(R2n) with s � 0 then there exists a constant

C > 0 such that

8 k > 0; sk(L�) � C k�kHs k�
s
2n�

1
2 : (5.1)

Daubechies [Dau80] proved that L� is trace-class (i.e., in I1) if � 2
Hs(R2n) with s > 2n. We can use Proposition 5.3 to improve this result.

Proposition 5.4. If � 2 Hs(R2n) with s � 0 then L� 2 I 2n
n+s ;1

� Ip for
each p > 2n=(n+ s). In particular, L� is trace-class if s > n.

Proof. We have k
n+s
2n sk(L�) � C k�kHs k

n+s
2n k�

s
2n�

1
2 = C k�kHs . �

It also follows easily from Proposition 5.3 that L� 2 I 2n
n+s+";2

if � 2
Hs(R2n) with s � 0. However, we can re�ne this latter result by using

interpolation.

Theorem 5.5. The mapping � 7! L� is a bounded operator fromHs(R2n)

to I 2n
n+s ;2

for each s � 0.

Proof. We apply the technique of real interpolation to the Banach spaces

Hs(R2n) and the Schatten quasi-ideals Ip;q. First, standard interpolation

results (e.g., [BL76, Theorem 6.2.4]) imply that

(Hs1(R2n); Hs2(R2n))�;2 = Bs
2;2(R

2n)

= Hs(R2n);

8><
>:
s1 6= s2;

0 < � < 1;

s = (1� �)s1 + �s2: (5.2)

Therefore (Hs1(R2n);Hs2(R2n))�;2 = Hs(R2n) as well. Also, by [K�on86,

Prop. 2.c.6], we have

(Ip1;1; Ip2;1)�;2 = Ip;2;

8>><
>>:

0 < p1 < p2 <1;

0 < � < 1;

1

p
=

1� �

p1
+

�

p2
:

(5.3)

Now choose s > 0, and de�ne

� = 1=2; s1 = s� "; s2 = s+ ";

p =
2n

n+ s
; p1 =

2n

n+ s� "
; p2 =

2n

n+ s+ "
:
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Then Proposition 5.4 implies that the mapping � 7! L� generates a boun-

ded operator from Hsi(R2n) to Ipi;1 for i = 1, 2, and therefore by the

interpolation statements in Eqs. (5.2) and (5.3) it also generates a bounded

operator from Hs(R2n) to Ip;2. �

Let � 2 Hs(R2n). Note that Eq. (5.1) states that sup
�
k

s
2n+

1
2 sk(L�)

�
<

1. However, Theorem 5.5 implies fsk(L�)g 2 I 2n
n+s ;2

, i.e.,
P
ks=nsk(L�)

2 <

1. Therefore, we cannot have, for example, inf
�
k

s
2n+

1
2 sk(L�)

�
> 0.

Example 5.6. Let n = 1, and set � = �
Br

where Br is a sphere in R2.

Then � 2 Hs(R2) for s < 1=2 but not for s = 1=2. Proposition 5.3 therefore

implies sk(L�) = O(k�t) for t < 3=4. The same is true for � = �
A where

A = Br1 nBr2 is an annulus in R2. However, in this latter case it is known

that t = 3=4 is the optimal exponent, i.e., that 0 < lim sup k3=4 sk(L�) <1
[RT93]. �

6. THE CALDER�ON{VAILLANCOURT THEOREM

The usual Calder�on{Vaillancourt Theorem for the Weyl correspondence

states that L� is a bounded operator on L2(Rn) if � 2 C2n+1(R2n). Var-

ious improvements and related results are known, including nearly sharp

results in the context of the Kohn{Nirenberg correspondence [Fol89]. In

this section we will prove Theorem 1.2, which states that L� is bounded on

L2(Rn) if � is in the H�older{Zygmund class �2n+"(R2n).

First, however, we brie
y sketch the idea of the proof, which uses Gabor

frame expansions in a di�erent manner than previous sections. As before,

we approximate the symbol � by another symbol �N , but now these approx-

imations are not obtained by truncating the frame expansion of �. Instead,

in order that �N share the smoothness properties of � yet be an element of

L2(R2n), we choose a smooth, compactly supported, nonnegative function

m 2 C1c (R2n) satisfying m(�; x) = 1 if j(�; x)j � 1, and de�ne

�N (�; x) = m(�=N; x=N)�(�; x): (6.1)

We then consider the frame expansions of � and �N simultaneously. By

Lemma 6.1 below, the frame coe�cients h�N ;��;�i can be realized as a

Fourier transform evaluated at � � �, speci�cally, h�N ;��;�i =

c�;� (�N � ���)^(� � �), where c�;� is a scalar with modulus 1 and � is

determined by (�; �). If it was the case that there was a single sequence

k 2 `1(�), independent of N and such that jh�N ;��;�ij � k(� � �), then

we could use the uniform pointwise convergence of �N to � on compact sets
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to derive a weak convergence of L�N to L� (Proposition 6.2). With su�cient

control on the convergence, we could then conclude from the boundedness of

each L�N on L2(Rn) that L� itself is bounded on L2(Rn). The smoothness

of � is the key to constructing such a sequence k. In particular, since each

�N 2 �s(R2n), we expect decay of (�N � ���)^(�) as j�j ! 1. We show

in Proposition 6.3 that (�N � ���)^(�) decays like j�j�(s�") with constants

independent of N and �. The �nal step is therefore to set k(�) = j�j�(s�"),
and to observe that k 2 `1(�) if s > 2n since � is a rectangular lattice in

R
2n.

We now proceed with the technical details of the proof. First, Lemma 6.1

establishes the desired form of h�N ;��;�i.
Lemma 6.1. jh�N ;��;�ij = j(�N � ���)^(�� �)j, where
� =

�
�2+�2

2
;��1+�1

2

�
.

Proof. By Eqs. (3.4) and (2.1), we can compute as follows:

h�N ;��;�i = h�N ; �(M(�; �)�i

= C

ZZ
�N (�; x) e

�2�i((�1��1)�+(�2��2)x)

� �
�
� � �2 + �2

2
; x+

�1 + �1

2

�
d� dx

= C

ZZ
�N (�; x) e

�2�i(���)(�;x) ���(�; x) d� dx

= C (�N � ���)^(�� �);

where C = e��i(�2�1��1�2). �

Next we show how existence of a bounding sequence k would lead to

weak convergence of L�N to L� and therefore to boundedness of L� on

L2(Rn). We state this result in terms of general approximation symbols

�N , although we shall only apply the proposition to �N de�ned by Eq.

(6.1).

Proposition 6.2. Let � 2 S 0(R2n) and let k 2 `1(�) be a nonnegative

sequence. Assume that �N 2 L2(R2n) are such that

8�; � 2 �; jh�N ;��;�ij � k(�� �);

and suppose that L�N ! L� weakly as operators from S(Rn) to S 0(Rn),

i.e., hL�N f; gi ! hL�f; gi for f , g 2 S(Rn). Then the operator L� is

bounded on L2(Rn), and its operator norm satis�es

kL�kB(L2) � A�1� kkk`1 :
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Proof. Each L�N is a bounded operator on L2(Rn), and, by Eq. (3.6), we

have

hL�N f; gi =
X
�;�2�

h�N ;��;�i hf; ~��i h~��; gi:

Let u = fjhf; ~��ijg and v = fjh~��; gijg. Then for each f , g 2 L2(Rn) we

have

jhL�N f; gij �
X
�;�2�

jh�N ;��;�ij jhf; ~��ij jh~��; gij

�
X
�;�2�

k(�� �)u(�) v(�)

= hk � u; vi`2

� kkk`1 kuk`2 kvk`2

� A�1� kkk`1 kfkL2 kgkL2 ;

where we have used Young's convolution inequality and the fact that f~��g
is a frame with frame bounds B�1� , A�1� . It follows immediately from this

that L� is bounded on L2(Rn) if L�N ! L� weakly as operators from

S(Rn) to S 0(Rn). �

In particular, if � 2 C(R2n) and �N is de�ned by Eq. (6.1), then the

�N are uniformly bounded in L1 norm and converge to � uniformly on

compact sets. Since for each f , g 2 S(Rn) we have hL�f; gi � hL�N f; gi =
h���N ;W (g; f)iwithW (g; f) 2 S(R2n), it follows that L�N ! L� weakly.

In order to establish that a bounding sequence k does exist, our next

task is to estimate the decay of (�N � ���)^(�) independently of N and �.

Proposition 6.3. Let f 2 �s(Rn) with s > 0, and let t = s� " > 0 with

" < 1. Let  2 S(Rn). Then there exists a constant C, depending only on

n,  , and f , such that

8 
; b 2 Rn; j(f � �b )^(
)j � C (1 + 
2)�t=2:

Proof. We will use the standard identi�cation of �s(Rn) with the Besov

space Bs
11(Rn) [Tri92, p. 28]. This provides us with an equivalent norm

for �s(Rn) via a smooth dyadic partition of unity in the transform domain,

as follows. Let v0 2 C1c (Rn) be any function such that supp(v0) � f
 2
R
n : j
j < 2g and such that v0(
) = 1 if j
j � 1. For each j > 0 de�ne

vj(
) = v0(2
�j
)�v0(2�(j�1)
). Then fvjg1j=0 is a smooth dyadic partition

of unity, i.e.,
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(a) if j > 0 then supp(vj) � f
 2 Rn : 2j�1 � j
j � 2j+1g,
(b)

P1
j=0 vj(
) = 1, and

(c) for each multi-index �, supj�0
�
2jj�j kD�vjkL1

�
<1.

Moreover, the following equivalence of norms holds:

kgk�s � sup
j�0

2sj k�vj � gkL1: (6.2)

For our purposes, we will impose additional restrictions on v0, namely that

1=2 � v0(
) � 1 when 1 � j
j � 3=2 and that 0 � v0(
) � 1=2 when

3=2 � j
j � 2. Then, since vj(
) = v1(2
�(j�1)
) for each j > 0, we have

8 j > 0; 3 � 2j�2 � j
j � 3 � 2j�1 =) 1

2
� vj(
) � 1:

Now, j
j is comparable to 2j if 
 2 supp(vj), and vj(
) is comparable

to 1 if 
 is in the annulus 3 � 2j�2 � j
j � 3 � 2j�1, which is contained in

supp(vj). Since these annuli cover all of R
n, it will be enough to prove that

there is a constant C independent of j and b such that

k�vj � (f � �b )kL1 � C 2�tj : (6.3)

For, if (6.3) is established and 
 is given, then 3 � 2j�2 � j
j � 3 � 2j�1 for

some j, so

j(f � �b )^(
)j �
kvj � (f � �b )^kL1

vj(
)
� 2 k�vj � (f � �b )kL1

� 2C 2�tj � 2C

�
4j
j
3

��t
:

Hence, we seek to establish Eq. (6.3). Note that there exists a constant

C1 independent of b such that kf � �b k�s � C1 kfk�s . Therefore, by the

norm equivalence in Eq. (6.2),

C2 = sup
b

sup
j�0

2sj k�vj � (f � �b )kL1 < 1: (6.4)

Our goal is to obtain a similar result with L1 replaced by L1 and s replaced

by t. Fix b and j, and de�ne B = B2"j=n(b), the ball of radius 2
"j=n centered

at b. Then, by Eq. (6.4),Z
B

j(�vj � (f � �b ))(x)j dx � jBj k�vj � (f � �b )kL1

� jB1j (2�j)n C2 2
�sj = C3 2

�tj ;

where B1 is the ball of radius 1.
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In order to derive a similar estimate for the integral outside B, de�ne

F1 = f � �b � � 1
2
B and F2 = f � �b � (1� � 1

2
B);

so that �vj � (f � �b ) = �vj � F1 + �vj � F2. Then it su�ces to show that

k�vj�FikL1 � C 2�tj for some constant C. Note that �vj(x) = 2j�1 �v1(2
j�1x)

and that  and �v1 are both Schwartz-class functions, hence decay faster

than any polynomial. In particular, for each M there exists a constant

K = K(M) so that j (x)j, j�v1(x)j � K jxj�M . Hence,

8x 2 Rn; j�vj(x)j � K 2j�1 j2j�1xj�M � K 2�(M+1)�(M+1)j jxj�M :

Now, if x =2 B and y 2 1
2
B, then jx� yj � jx� bj=2. Hence, for such x,

j(�vj � F1)(x)j �
Z
1
2
B

j�vj(x� y)F1(y)j dy

� kfkL1 k kL1K 2�(M+1)�(M+1)j

Z
1
2
B

jx� yj�M dy

� kfkL1 k kL1K 2�(M+1)�(M+1)j
��1
2
B
��� jx� bj

2

��M

= C4 2
�(1+M�")j jx� bj�M ;

with C4 depending on M , but not on b or x. Therefore, taking M > n and

M > t+ "� 1, we haveZ
BC

j�vj � F1(x)j dx � C5 2
�(1+M�")j � C5 2

�tj ;

with C5 depending only on M . Finally, if we also take M > tn=", thenZ
BC

j�vj � F2(x)j dx � k�vjkL1 kF2 � �BCkL1

� k�v1kL1 kfkL1 k�b � �BCkL1

� k�v1kL1 kfkL1 K sup
x=2B

jx� bj�M

� C6 2
�"jM=n

� C6 2
�tj ;

with C6 depending only on M . �

The above results can now be combined to obtain a proof of Theorem 1.2.
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Proof of Theorem 1.2. Assume that � 2 �s(Rn), and let �N be de�ned by

Eq. (6.1). Fix t = s � " > 2n. Then by Lemma 6.1 and Proposition 6.3,

there exists a constant C, independent of N , such that jh�N ;��;�ij �
C (1 + (� � �)2)�t=2. De�ne k(�) = (1 + �2)�t=2. Then k 2 `1(�) since

t > 2n and � is a rectangular lattice in R2n. Since �N ! � uniformly on

compact sets, the Weyl transforms L�N converge weakly to L�. Hence the

conditions of Proposition 6.2 are ful�lled, and therefore L� extends to a

bounded operator on L2(Rn). �

7. EXTENSIONS

In this �nal section, we connect Theorem 1.2 (Calder�on{Vaillancourt)

with the result of Pool that the Weyl transform � 7! L� is a unitary

mapping of L2(Rn) onto I2. Our motivation is the recent result of Simon

[Sim92] that there are no estimates on the operator norm of L� of the form

kL�kB(L2) � C k�kLp when p > 2. In particular, since the operator norm

is dominated by any of the Schatten norms, this implies that no estimate

of the form kL�kIq � C k�kLp is possible for any p > 2 and q � 1.

Note that Lp(R2n) = B0
pp(R

2n). Hence Pool's result is that the Weyl

transform is a bounded mapping of B0
22(R

2n) onto I2. Our version of

the Calder�on{Vaillancourt Theorem states that the Weyl transform maps

�s(R2n) = Bs
11(R2n) into the space of bounded operators B(L2(Rn)).

Although I1 is only a proper subspace of B(L2(Rn)), we can interpolate

between these results on B0
22(R

2n) and Bs
11(R2n) to obtain a result which

states that the Weyl transform maps Bt
pp(R

2n) into Ip when p > 2 and t

is large enough. Compare this to Simon's result, that the Weyl transform

does not map B0
pp(R

2n) into any Iq.

Theorem 7.1. The Weyl transform � 7! L� is a bounded mapping of

Bt
pp(R

2n) into Ip for each 2 < p <1 and 2n(1� 2
p
) < t <1.

Proof. Choose any p and t such that 2 < p <1 and 2n(1� 2=p) < t <1.

Set � = 1 � 2=p, and note that 0 < � < 1. De�ne s = t=�, and note that

s > 2n. Then, by Theorem 1.2, we know that the Weyl correspondence is

a bounded mapping of �s(R2n) = Bs
11(R2n) into B(L2(Rn)). Moreover,

Pool's theorem states that the Weyl transform is a bounded mapping of

B0
22(R

2n) = L2(R2n) onto I2. By standard results on interpolation of

Besov spaces, e.g., [BL76, Theorem 6.4.5], we have that

(B0
22(R

2n); Bs
11(R2n))�;p = Bt

pp(R
2n):
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Moreover, by the proof of and the remark following Theorem 2.c.6 in

[K�on86],

(I2; B(L2(Rn)))�;p = Ip:

It therefore follows that the Weyl correspondence is a bounded mapping of

Bt
pp(R

2n) into Ip. �

Note added in proof. Following submission of this manuscript, we learned of the paper

of Tachizawa [Tac94], which derives results on pseudodi�erential operators by using a

technique somewhat similar to the one used here. In particular, Tachizawa expands the

symbol into a Wilson basis, rather than a Gabor frame. Both Wilson bases and Gabor

frames are de�ned in terms of time-frequency translates of functions. However, the results

in [Tac94] are distinct from ours. A recent preprint by Rochberg and Tachizawa [RT97]

also uses Gabor frame expansions of the symbol to obtain results on pseudodi�erential

operators. As pointed out by the referee, the idea of using expansions based on some

kind of time-frequency shifts has a long history in the study of integral operators. For

example, some of the atomic decompositions employed by Janson, Peetre, and Rochberg

in [JPR87] are of this type.

REFERENCES

[BHW95] J. Benedetto, C. Heil, and D. Walnut, Di�erentiation and the Balian{Low

theorem, J. Fourier Anal. Appl. 1 (1995), 355{402.

[BL76] J. Bergh and J. L�ofstr�om, Interpolation Spaces, An Introduction, Springer{

Verlag, New York, 1976.

[Dau80] I. Daubechies, On the distributions corresponding to bounded operators in the

Weyl quantization, Comm. Math. Phys. 75 (1980), 229{238.

[Dau92] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[DS52] R. J. Du�n and A. C. Schae�er, A class of nonharmonic Fourier series,

Trans. Amer. Math. Soc. 72 (1952), 341{366.

[DS88] N. Dunford and J. T. Schwartz, Linear Operators, Part II, Wiley, New York,

1988.

[Fla88] P. Flandrin,Maximal signal energy concentration in a time-frequency domain,

in Proc. ICASSP-88, 1988, pp. 2176{2179.

[Fol89] G. B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press,

Princeton, NJ, 1989.

[Gab46] D. Gabor, Theory of communications, J. Inst. Elec. Eng. (London) 93 (1946),

429{457.

[HW89] C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM

Rev. 31 (1989), 628{666.

[HK94] F. Hlawatsch and W. Kozek, Time frequency projection �lters and time-

frequency signal expansions, IEEE Trans. Signal Proc. 42 (1994), 3321-3334.

[How80] R. Howe, Quantum mechanics and partial di�erential equations, J. Funct.

Anal. 38 (1980), 188{254.

[JPR87] S. Janson, J. Peetre, and R. Rochberg, Hankel forms and the Fock space, Rev.

Mat. Iberoamericana 3 (1987), 61{138.

[Jan84] A. J. E. M. Janssen, Positivity properties of phase-plane distribution func-

tions, J. Math. Phys. 25 (1984), 2240{2252.

[K�on86] H. K�onig, Eigenvalue Distribution of Compact Operators, Birkh�auser, Boston,

1986.



452 HEIL, RAMANATHAN, AND TOPIWALA

[Pie87] A. Pietsch, Eigenvalues and s-Numbers, Cambridge Univ. Press, Cambridge,

1987.

[Poo66] J. C. T. Pool, Mathematical aspects of the Weyl correspondence, J. Math.

Phys. 7 (1966), 66{76.

[RT93] J. Ramanathan and P. Topiwala, Time-frequency localization via the Weyl

correspondence, SIAM J. Math. Anal. 24 (1993), 1378{1393.

[RT94] J. Ramanathan and P. Topiwala, Time-frequency localization and the spectro-

gram, Appl. Comput. Harmon. Anal. 1 (1994), 209{215.

[RT97] R. Rochberg and K. Tachizawa, Pseudodi�erential operators, Gabor frames,

and local trigonometric bases, in Gabor Analysis and Algorithms: Theory and

Applications (H. G. Feichtinger and T. Strohmer, eds.), Birkh�auser, Boston,

1997, pp. 171{192.

[Sei92] K. Seip, Density theorems for sampling and interpolation in the Bargmann{

Fock space I, J. Reine Angew. Math. 429 (1992), 91{106.

[SW92] K. Seip and R. Wallst�en, Sampling and interpolation in the Bargmann{Fock

space II, J. Reine Angew. Math. 429 (1992), 107{113.

[Sim92] B. Simon, The Weyl transform and Lp functions on phase space, Proc. Amer.

Math. Soc. 116 (1992), 1045{1047.

[Tac94] K. Tachizawa, The boundedness of pseudodi�erential operators on modulation

spaces, Math. Nachr. 168 (1994), 263{277.

[Tri92] H. Triebel, Theory of Function Spaces II, Birkh�auser, Boston, 1992.


