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Let A be a dilation matrix, an n × n expansive matrix that maps Zn into itself. Let Λ
be a finite subset of Zn, and for k ∈ Λ let ck be r × r complex matrices. The refinement

equation corresponding to A, Zn, Λ, and c = {ck}k∈Λ is f(x) =
P

k∈Λ
ck f(Ax − k).

A solution f : Rn → Cr, if one exists, is called a refinable vector function or a vector
scaling function of multiplicity r. This paper characterizes the higher-order smoothness
of compactly supported solutions of the refinement equation, in terms of the p-norm

joint spectral radius of a finite set of finite matrices determined by the coefficients ck.
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1. Introduction

Wavelet bases for L2(R), which consist of translates and dilations of a single

“wavelet,” possess excellent time-frequency localization properties. For this reason,

wavelet bases have proved useful for numerous applications in mathematics and en-

gineering, including signal processing, image compression, and numerical analysis

(for example, see Refs. 5 or 21). In the classical setting, the construction of the

wavelet basis begins with a refinable function, which is a solution to the refine-

ment equation f(x) =
∑

k∈Z
ck f(2x − k). The continuity of such functions can be
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characterized in terms of the joint spectral radius of a certain family of associated

matrices; we refer to Ref. 4 for background and references.

The smoothness of the wavelet is an important consideration in applications

such as image processing and computer graphics. For example, quoting Mallat (see

Sec. 7.2 of Ref. 18), “For image coding applications, a smooth error is often less vis-

ible than an irregular error, even though they have the same energy.” In one dimen-

sion, there are many constructions of smooth wavelets, starting with the classical

compactly supported Daubechies wavelets. However, for image and video process-

ing, we need to work in higher dimensions, where there is considerably less known

both in terms of theory and actual constructions.

In higher dimensions the traditional approach is through tensor products of one-

dimensional wavelets. This produces a variety of drawbacks, including horizontal

and vertical biases and a lack of design freedom (for illustrations of application where

directional sensitivity is important, see, e.g., Refs. 1, 9). One way to counteract these

deficiencies is to use multiple generating functions, which leads to a multiwavelet

basis consisting of translates and dilates of several functions. By combining this

with dilation by a matrix rather than uniform dilation by 2 we can also address

issues with directional biases. Such non-tensor product wavelets have been used in

a variety of applications; for example, see Refs. 23, 24, 25 for some recent two and

three dimensional applications.

In this paper we study smooth solutions to the refinement equation

f(x) =
∑

k∈Λ

ck f(Ax − k), x ∈ R
n, (1.1)

where A is a dilation matrix (an n× n expansive matrix that maps Z
n into itself),

Λ is a finite subset of Z
n, the ck are r × r complex matrices, and f : R

n → C
r

is vector-valued. A solution f, if one exists, is called a refinable vector function of

multiplicity r. The existence of continuous solutions to such vector refinement equa-

tions was studied in Ref. 4, but here we are concerned with higher-order smoothness

of compactly supported solutions to the refinement equation. Some initial results

in this direction were obtained in Ref. 12. Here we characterize the higher-order

smoothness of refinable vector functions in terms of the p-norm joint spectral ra-

dius of a finite set of finite matrices determined by the coefficients ck.

2. Notation

Most computations in this manuscript are independent of the choice of norm on

R
n; if not specifically stated then the norm is taken to be taken to be the Euclidean

norm on R
n.

The transpose of a matrix or vector B is BT , while we let B∗ denote the conju-

gate transpose of B.

We use a generalized matrix notation which allows matrices or vectors to be

indexed by arbitrary countable sets. If desired, such generalized matrices can always

be realized as ordinary matrices by choosing a specific ordering for the index set.
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The actual ordering used is not important as long as the same ordering is used

consistently. To be precise, let J and K be finite or countable index sets. Let mj,k

be r×s matrices for j ∈ J and k ∈ K. Then we say M = [mj,k]j∈J,k∈K ∈ (Cr×s)J×K

is a J × K matrix (with r × s block entries). If N = [nk,l]k∈K,l∈L ∈ (Cs×t)K×L,

then the product of the J × K matrix M with the K × L matrix N is the J × L

matrix formally defined by MN =

[

∑

k∈K

mj,knk,l

]

j∈J,l∈L

.

The Kronecker product of an m×n matrix C and a p×q matrix D is the mp×nq

matrix C ⊗ D defined in block form by

C ⊗ D = [cijD]i=1,...,m
j=1,...,n

=







c11D · · · c1nD
...

. . .
...

cm1D · · · cmnD






.

A “column vector” is a J × 1 matrix, which we will denote by v = [vj ]j∈J . The

entries vj may be scalars or r × s blocks. In particular,

C
r = C

r×1 =

















u1

...

ur






: u1, . . . , ur ∈ C











is the space of column vectors of length r. Analogously, a “row vector” is a 1 × J

matrix, which we will denote by u = (uj)j∈J . In particular, C
1×r is the space of all

row vectors of length r, i.e.,

C
1×r = {uT : u ∈ C

r} = {(u1, . . . , ur) : u1, . . . , ur ∈ C}.

The support of a vector-valued function g = (g1, . . . , gr)
T : R

n → C
n is the

closure of {x ∈ R
n : g(x) 6= 0}. Integrals of g are computed componentwise. In

particular, if g is integrable then we define its Fourier transform by

ĝ(w) =

∫

Rn

g(x)e−2πix·wdx =

(
∫

Rn

g1(x)e−2πix·wdx, . . . ,

∫

Rn

gr(x)e−2πix·wdx

)T

,

where x · w is the usual inner product.

3. Preliminaries

3.1. Standing Assumptions

We assume throughout that the refinement Eq. (1.1) is fixed. We assume AZ
n ⊆

Z
n and A is expansive, i.e., every eigenvalue λ satisfies |λ| > 1. For simplicity of

notation, throughout this paper we let

B = AT .

The lattice Z
n is chosen for simplicity; all of our results generalize easily to dilation

matrices that map a full-rank lattice Γ in R
n into itself.
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Since AZ
n ⊆ Z

n, the dilation matrix A necessarily has integer determinant. We

set

m = |det(A)|,

and let D = {d1, d2, . . . , dm} be fixed full set of digits with respect to A, i.e., a full

set of representatives of Z
n/A(Zn). Then Z

n is partitioned into the disjoint cosets

Γd = A(Zn) − d = {Ak − d : k ∈ Z
n}, d ∈ D. (3.1)

Without loss of generality, we may assume that 0 ∈ D.

The refinement operator associated with the refinement equation is the opera-

tor S defined on vector-valued functions g : R
n → C

r by

Sg(x) =
∑

k∈Λ

ckg(Ax − k).

A refinable function is a fixed point point of S. The cascade algorithm associated

with the refinement equation is the iteration of the operator S given by f i+1(x) =

Sf i(x).

3.2. Attractors and Tiles

For k ∈ Z
n, let wk : R

n → R
n be the affine map wk(x) = A−1(x + k). Given a

finite subset H ⊆ Z
n the attractor of the iterated function system (IFS) generated

by {wk}k∈H is the unique nonempty compact set KH that satisfies11

A−1(KH + H) = KH .

KH can also be expressed as

KH =

∞
∑

j=1

A−j(H). (3.2)

In this article, the attractors KD and KΛ will be of particular interest. We note

that any compactly supported solution f of the refinement Eq. (1.1) must satisfy4,13

supp(f) ⊆ KΛ.

We say that Q is a tile if Q + Z
n = R

n and Q and Q + k only intersect on a

set of Lebesgue measure zero, i.e., |Q ∩ (Q + k)| = 0 for k ∈ Z
n \ {0}. Equivalent

conditions for Q to be a tile can be found in Ref. 6; in particular, Q is a tile if and

only if |Q| = 1.

From now on, we denote the attractor KD by

Q = KD.

If n ≤ 3 or m > n then there always exists a full set of digits such that Q = KD is

a tile.15–17 If n ≥ 4 then there do exist dilation matrices A for which no choice of

digit set D is Q = KD a tile.19 However, such matrices are rare in some sense, and

therefore throughout this article we will assume that Q = KD is a tile. Since KΛ is

compact and Q is a tile, there exists a finite set Ω ⊆ Z
n such that KΛ ⊆ Q + Ω.

heil
Pencil
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3.3. A-nary Expansions

By applying Eq. (3.2) to the attractor Q = KD, we see that each point x ∈ Q has

an A-nary expansion

x = .ε1ε2 · · · =
∞
∑

j=1

A−jεj

with εj ∈ D for each j. That this expansion may not be unique.

It will be useful to define a function τ : Q → Q that represents a left-shift of

this A-nary expansion. Since Q is the attractor of the IFS generated by {wk}k∈D,

we have

Q = A−1(Q + D) =
⋃

d∈D

wdi
(Q).

Therefore each point x ∈ Q satisfies x ∈ wdi
(Q) for at least one di ∈ D. If x ∈

wdi
(Q) for a unique digit di, then we define

τx = w−1
di

(x) = Ax − di.

In this case we have di = ε1 and τx = .ε2ε3 · · · . However, x might belong to more

than one wdi
(Q). To eliminate the ambiguity of this definition for other points in Q,

we partition Q into the disjoint subsets Q1, . . . , Qm given by

Q1 = wd1
(Q) = A−1(Q + d1),

Qi = wdi
(Q) \

(

i−1
⋃

j=1

Qj

)

, i = 2, . . . ,m.

Then Q =
⋃m

i=1 Qi and each x ∈ Q lies in a unique Qi. We use this i to define

τx = w−1
di

(x) = Ax − di. Now τ is well-defined.

3.4. Matrix Form of the Refinement Equation

Let g : R
n → C

r be any function such that supp(g) ⊆ KΛ. Define the folding of g

to be the function Φ: Q → (Cr×1)Ω×1 given by

Φg(x) = [g(x + k)]k∈Ω, x ∈ Q.

For each d ∈ D, we define the Ω × Ω matrix Td = [cAj−k+d]j,k∈Ω. We define an

operator T acting on functions u : Q → (Cr×1)Ω×1 by

Tu(x) =

m
∑

i=1

χQi
(x)Tdi

u(Ax − di).

In other words,

Tu(x) = Tdi
u(τx) if x ∈ Qi.

As shown in Ref. 4 (Prop. 2.13), for any g : R
n → C

r with supp(g) ⊆ KΛ satisfying

g(x) = 0 for x ∈ ∂KΛ, the refinement operator can be written in the equivalent

matrix form

ΦSg = TΦg.
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3.5. Generalized Polynomial Vectors

We use the standard multiindex notation xα = xα1

1 · · ·xαn
n where α = (α1, . . . , αn).

The degree or order of α or xα is deg(xα) = |α| = α1 + · · · + αn. If s ≥ 0 then

the number of multiindices of degree s is ds =
(

s+n−1
n−1

)

. If βi ≤ αi for each i (i.e.,

β ≤ α), then we set
(

α
β

)

=
(

α1

β1

)

· · ·
(

αn

βn

)

, otherwise
(

α
β

)

= 0.

Let X[s] denote the vector of all monomials of degree s with respect to some

fixed ordering of the multiindices:

X[s] = [xα]|α|=s.

Given an n × n matrix M = [mij ]i,j=1,...,n and given s ≥ 0, we let M[s] =

[ms
α,β ]|α|=s,|β|=s be the ds × ds matrix whose entries are defined by the equation

∑

|β|=s

ms
α,βxβ = (Mx)α =

n
∏

i=1

(mi,1x1 + · · · + mi,nxn)αi . (3.3)

Then we have X[s](Mx) = M[s]X[s](x).

Given a collection
{

vα = (vα,1, . . . , vα,r) : 0 ≤ |α| < κ
}

of row vectors of

length r, we group these vectors together by degree to form an associated ds × r

matrix v[s] defined by

v[s] = [vα]|α|=s.

We also associate to each multiindex α the row vector of polynomials yα : R
n →

C
1×r defined by

yα(x) =
∑

0≤β≤α

(−1)|α|−|β|

(

α

β

)

vβ xα−β , (3.4)

and then define the ds × r matrix of polynomials

y[s](x) = [yα(x)]|α|=s.

We also collect the matrices y[s](x + k) into a row to form the function Y[s] : R
n →

(Cds×r)1×Z
n

given by

Y[s](x) = (y[s](x + k))k∈Zn .

The matrix Y[s](0) is the row vector formed by evaluating the matrix of polynomials

y[s](x) at the lattice points in Z
n.

3.6. The Joint Spectral Radius

The joint spectral radius of a finite set of square matrices A = {A1, . . . , Ak} is

ρ̂∞(A) = lim
ℓ→∞

max
Π∈Pℓ

‖Π‖1/ℓ, (3.5)

where Pℓ is the set of all matrix products of ℓ elements of A. Specifically P0 = {I}

and Pℓ = {Aj1 · · · Ajℓ
: ji = 1, . . . , k}. This definition is independent of the choice
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of the norm ‖ · ‖. It was conjectured by Daubechies and Lagarias8 and later proved

by Berger and Wang2 that (3.5) can be restated as

ρ̂∞(A) = lim
ℓ→∞

max
Π∈Pℓ

ρ(Π)1/ℓ (3.6)

where ρ(Π) is the usual spectral radius of the matrix Π.

The joint spectral radius was first introduced by Rota and Strang.20 It was

rediscovered independently by Daubechies and Lagarias,7 who used it to analyze

refinable functions f : R → C with dilation factor 2. They developed conditions on

the joint spectral radius of two specific matrices that determine the differentiability

of a scaling function in this one-dimensional setting. Since then the joint spectral

radius has found a wide range of applications, including coding and graph theory

as well as wavelet theory. We refer to Ref. 14 for a recent survey of the joint spec-

tral radius, including techniques for computing or approximating it and extensive

references.

4. Existence of Solution to the Refinement Equation

4.1. Accuracy of a Refinable Function

The accuracy of a refinable function f : R
n → C

r is the largest integer κ > 0 such

that every multivariate polynomial q(x) with deg(q) < κ can be written

q(x) =
∑

k∈Zn

akf(x + k) =
∑

k∈Zn

r
∑

i=1

ak,ifi(x + k) a.e., x ∈ R
n,

for some row vectors ak = (ak,1, . . . , ak,r) ∈ C
1×r. If no polynomials are reproducible

from translates of f then we set κ = 0. We say that translates of f along Γ are

linearly independent if
∑

k∈Γ

akf(x + k) = 0 implies ak = 0 for each k. The following

result4 states the minimal accuracy conditions for a compactly supported solution

of the refinement equation.

Theorem 4.1. Let f : R
n → C

r be a compactly supported solution to the refinement

Eq. (1.1). Let {Γd}d∈D be the cosets defined in (3.1). If there exists a 1×r row vector

u0 such that u0f̂(0) 6= 0 and

u0 =
∑

k∈Γd

u0ck for each d ∈ D, (4.1)

then f has accuracy κ ≥ 1 and
∑

k∈Zn u0f(x + k) = 1 a.e.

For higher-order accuracy, we have the following characterization.3 Here we use

the notation introduced in Section 3.5.

Theorem 4.2. Assume that f : R
n → C

r is a compactly supported solution to the

refinement Eq. (1.1). Let L = [cAj−k]j,k∈Zn . If there exists a set of 1 × r vectors

{vα : 0 ≤ |α| < κ} such that
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(i) v0f̂(0) 6= 0, and

(ii) Y[s](0) = A[s]Y[s](0)L for 0 ≤ s < κ,

then f has accuracy κ. Furthermore, after scaling each of the vectors vα by an

appropriate constant,

X[s](x) =
∑

k∈Zn

y[s](k)f(x + k) = Y[s](0)F (x), 0 ≤ s < κ, (4.2)

where F (x) = [f(x + k)]k∈Zn .

It follows from (4.2) that the vectors yα(k) are exactly those needed to reproduce

the monomials from translates of f :

xα =
∑

k∈Zn

yα(k)f(x + k), 0 ≤ |α| < κ.

By (3.4), the coefficients yα(k) have the form of polynomials yα(x) evaluated at

k ∈ Z
n.

If higher-order accuracy conditions are satisfied, a significant structure is im-

posed on the matrices Td. Assume that the conditions for accuracy κ given in The-

orem 4.2 are satisfied. In particular u0 6= 0, and therefore the vector of polynomials

yα defined by (3.4) has degree |α|. We define the finite row vectors

eα = (yα(k))k∈Ω ∈ (C1×r)1×Ω, 0 ≤ |α| < κ, (4.3)

formed by restricting the infinite row vectors (yα(k))k∈Zn to components whose

indices lie in Ω. It is shown in Ref. 4 (see Lem. 3.16) that if a compactly sup-

ported solution to the refinement Eq. (1.1) exists, then these vectors are linearly

independent.

For each 0 ≤ s < κ, we define Us to be the subspace of (C1×r)1×Ω given by

Us = span{eα : 0 ≤ |α| ≤ s}.

Since the set {eα : 0 ≤ |α| ≤ s} is linearly independent, it forms a basis for Us.

We define the dot product of two column vectors u = [uk]k∈Ω and v = [vk]k∈Ω ∈

(C1×r)1×Ω by

u · v = u∗v =
∑

k∈Ω

u∗
k vk =

∑

k∈Ω

r
∑

i=1

uk,i vk,i,

where u∗ is the conjugate transpose of u. Then for a row vector u and a column

vector v, uv = u∗ · v. Define Vs to be the orthogonal complement of U∗
s :

Vs = {e∗α : 0 ≤ |α| ≤ s}⊥ = {v ∈ (C1×r)1×Ω : eαv = 0 for 0 ≤ |α| ≤ s}. (4.4)

The following theorem4 shows that the matrices {Td}d∈D can be simultaneously

block triangularized.

Theorem 4.3. Let Ω ⊆ Z
n be a finite set such that KΛ ⊆ Q + Ω. Assume there

exist row vectors {vα : 0 ≤ |α| ≤ s} such that the conditions of Theorem 4.2 are
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satisfied. Let the vectors eα be given by (4.3) and assume that these vectors are

linearly independent. Let Vs ⊆ (C1×r)1×Ω be given by (4.4). Let {ẽα : 0 ≤ |α| ≤ s}

be the result of applying the Gram-Schmidt orthogonalization procedure to {eα : 0 ≤

|α| ≤ s}. Let BV be an orthonormal basis for Vκ−1. Then

B = {ẽα : 0 ≤ |α| ≤ s} ∪ BV

is an orthonormal basis for (C1×r)1×Ω, and for each d ∈ D, the matrix Td in this

basis has the block form

[Td]B =















B0 0

B1

. . .

Bκ−1

∗ Cd















, (4.5)

where each Bs is similar to A−1
[s] , and Cd = [Td|Vκ−1

]BV
.

4.2. Convergence of Cascade Algorithm

This section addresses the convergence of the cascade algorithm. The following

theorem4 guarantees the convergence of the cascade algorithm, and furthermore, for

a certain set of starting functions, ensures the uniform convergence of the cascade

algorithm to a continuous solution.

Theorem 4.4. Let Ω ⊆ Z
n be a finite set such that KΛ ⊆ Q + Ω. Assume that

there exists a nonzero vector u0 ∈ C
1×r such that (4.1) holds. Let e0 = (u0)k∈Ω ∈

(C1×r)1×Ω, and define

V0 = {e∗0}
⊥ = {v ∈ (Cr×1)Ω×1 : e0v =

∑

k∈Ω

u0vk = 0}. (4.6)

Set

I0 =
{

g ∈ C(Rn, Cr) : supp(g) ⊆ KΛ and
∑

k∈Zn

u0g(x + k) = 1 a.e.
}

(4.7)

If I0 6= ∅ and ρ̂∞({Td|V0
}d∈D) < 1, then for any initial f0 ∈ I0 the cascade algorithm

converges uniformly to a continuous solution f of the refinement equation.

As seen above, the sufficient condition for the cascade algorithm to converge

depends on the set I0 and the computation of ρ̂∞({Td|V0
}d∈D). Some auxiliary

facts are provided below.

The set I0 defined by (4.7) is determined by two quantities: the set Λ and the

row vector u0. Since any continuous function supported in KΛ must be zero on the

boundary of KΛ, it is sufficient to study the question of when the set

I(Λ, u0) =
{

g ∈ L∞(Rn, Cr) : g(x) = 0 for x /∈ K◦
Λ and

∑

k∈Γ

u0g(x + k) = 1
}
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contains a continuous function. The following result4 shows that I(Λ, u0) contains

such a function exactly when it contains any functions at all. Further, whether

I(Λ, u0) is nonempty or not is independent of the value of u0.

Lemma 4.1. Let Λ ⊆ Γ be finite and let u0 ∈ C
1×r be nonzero. Then the following

statements are equivalent.

(a) I(Λ, u0) 6= ∅

(b) I(Λ, u0) contains a continuous function.

(c) K◦
Λ + Γ = R

n, i.e., lattice translates of K◦
Λ cover R

n.

If the coefficients {ck}k∈Zn satisfy higher-order accuracy conditions, then The-

orem 4.3 can be used to reduce the computation of ρ̂∞({Td|V0
}d∈D) to computing

the joint spectral radius on a smaller subspace of V0.

Corollary 4.1. Let Ω ⊆ Z
n be a finite set such that KΛ ⊆ Q+Ω. Assume that there

exist row vectors {vα : 0 ≤ |α| ≤ s} such that the conditions of Theorem 4.2 are

satisfied. Let the vectors eα be given by (4.3) and assume these vectors are linearly

independent. Let Vs ⊆ (C1×r)1×Ω be given by (4.4). Then

ρ̂∞({Td|V0
}d∈D) = max

(

ρ(A−1), ρ̂∞({Td|Vκ−1
}d∈D)

)

.

5. Refinement Equation for Derivatives of a Refinable Function

Assume that f ∈ C
ν(Rn; Cr) is a smooth vector-valued function that satisfies the

refinement Eq. (1.1). It was proved in Ref. 12, that the derivatives of f of order

0 ≤ s ≤ ν are refinable and can be expressed in terms of the refinement coefficients

of f. As the proof has not appeared outside of Ref. 12, we include it here for

completeness as the next Proposition.

Given s with s ≤ ν, each component fi of f has ds partial derivatives of order

s. We write

D[s]fi =

[

∂sfi

∂xα

]

|α|=s

, 0 ≤ s ≤ ν, 1 ≤ i ≤ r.

Then D[s]f : R
n → (Cds×1)r×1 is given by D[s]f =







D[s]f1

...

D[s]fr






.

Proposition 5.1. Let f : R
n → C

r be refinable with coefficients {ck}k∈Zn , and

assume f ∈ C
ν(Rn). For each 0 ≤ s ≤ ν, the function D[s]f satisfies the refinement

equation

D[s]f =
∑

k∈Λ

(ck ⊗ B[s]) (D[s]f)(Ax − k).
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Proof. Let a1, . . . , an be the columns of A and b1, . . . , bn the rows of B = AT, so

we have aj = bT
j . Consider the first-order partial derivatives of fi(Ax − k):

Dj

(

fi(Ax − k)
)

=
n

∑

ℓ=1

(Dℓfi)(Ax − k) aℓj

= aT
j







(D1fi)(Ax − k)
...

(Dnfi)(Ax − k)






= bj

(

D[1]fi

)

(Ax − k),

where Dj = ∂
∂xj

. Since f ∈ C
ν(Rn), the partial derivative operators commute.

Therefore, if |α| = s then

∂sfi(Ax − k)

∂xα
= Dα1

1 · · ·Dαn
n

(

fi(Ax − k)
)

=
(

(b1D[1])
α1 · · · (bnD[1])

αnfi

)

(Ax − k)

=
(

(b11D1 + · · · + b1nDn)α1 · · · (bn1D1 + · · · + bnnDn)αnfi

)

(Ax − k)

=
(

(BD[1])
αfi

)

(Ax − k) =
∑

|β|=s

bs
α,β

∂sfi

∂xβ
.

where the last equality comes from (3.3). Combining all derivatives of fi of order s

gives the relationship

D[s]

(

fi(Ax − k)
)

= B[s]

(

(D[s]fi)(Ax − k)
)

. (5.1)

For each k ∈ Z
d, let ck = {cℓ,j

k }r
ℓ j=1 where cℓ,j

k is the ℓ, j-th entry of ck. The

refinement equation then can be rewritten as fi(x) =
∑

k∈Λ

[

∑r
j=1 ci,j

k fj(Ax − k)
]

.

Substituting Eq. (5.1) into this yields

D[s]fi(x) =
∑

k∈Λ





r
∑

j=1

ci,j
k B[s](D[s]fj)(Ax − k)



 ,

and therefore

D[s]f(x) =
∑

k∈Λ

(ck ⊗ B[s])(D[s]f)(Ax − k).

As seen above, the coefficients {ck ⊗ B[s]}k∈Λ will play an important role in

dealing the derivative of a refinable function.

6. Existence of a Differentiable Solution to the Refinement

Equation

For any compact set K ⊆ R
n, the space Cν(K, Cr) is a Banach space.22 This leads

to the following lemma which will be useful in considering the convergence of the

cascade algorithm for the derivatives.
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Lemma 6.1. Let K ⊆ R
n be compact. Suppose that f i ∈ Cν(K, Cr) and f i con-

verges uniformly to f. If for each |α| = ν there exists a gα such that ∂νfi

∂xα
→ gα,

then f ∈ Cν(K, Cr) and gα = ∂νfi

∂xα
.

Using the refinement coefficient for the derivative D[s], we define matrices

{T s
d}d∈D analogously to the matrices Td:

T s
d =

[

cAj−k+d ⊗ B[s]

]

j,k∈Ω
= Td ⊗ B[s]. (6.1)

It is these matrices that will be of interest when considering the convergence of the

cascade algorithm for the derivative.

The proof of Theorem 3.17 in Ref. 4 shows that for each d ∈ D and 0 ≤ s ≤ κ

we have

[eαTd]|α|=s = A−1
[s] [eα]|α|=s + A−1

[s]

s−1
∑

t=0

Q[s,t](−d)[eβ ]|β|=s,

where

Q[s,t](y) = (−1)s−t
[

(

α
β

)

yα−β
]

|α|=s,|β|=s
.

This leads to the triangularization in Eq. (4.5), and is useful for obtaining a similar

triangularization form for {T s
d}d∈D. This form will be useful in deriving the condi-

tions similar to those of Theorem 4.4 for the convergence of the cascade algorithm

to a ν-times continuously differentiable solution.

It is necessary to find the right class of starting functions for the cascade algo-

rithm. If the accuracy conditions corresponding to κ = ν + 1 are satisfied, then for

0 ≤ |α| ≤ ν we have eαΦf(x) = xα for x ∈ Q. Therefore, for x ∈ Q and |β| = ν,

eαΦ
∂νf(x)

∂xβ
=

{

α!, if β = α,

0, otherwise.

Let Iν be the dν × dν identity matrix, and let uβ be the row β of Iν . Then for

each |α| = |β| = ν,

(eα ⊗ uβ)ΦD[ν]f = eαΦ
∂νf(x)

∂xβ
= α! δα,β . (6.2)

where δα,β is the Kronecker delta. It is necessary that the starting functions for the

cascade algorithm satisfy Eq. (6.2).

In order to prove our main theorem, it is useful to state a more general form of

Theorem 3.6.

Theorem 6.1. Let ν ≥ 1. Let Ω ⊆ Z
n be a finite set such that KΛ ⊆ Q + Ω.

Let E be a nonempty closed subset of ((Cr×1)dν×1)Ω×1 such that T ν
d (E) ⊆ E for

each d ∈ D. Let V be subspace of ((Cr×1)dν×1)Ω×1 that contains E − E and is

right-invariant under each T ν
d (defined in (6.1)). Define

I0 = {g ∈ C(Rn, (Cr×1)dν×1) : supp(g) ⊆ KΛ and Φg(Q) ⊆ E}.
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If I0 6= ∅ and ρ̂∞
(

{Td|V }d∈D

)

< 1, then for any initial f0 ∈ I0, the cascade algo-

rithm

f i+1 =
∑

k∈Λ

(ck ⊗ B[ν])f
i(Ax − k)

converges uniformly to a continuous solution f of the refinement equation.

Now we come to the main result.

Theorem 6.2. Let ν ≥ 1. Let Ω ⊆ Z
n be a finite set such that KΛ ⊆ Q+Ω. Assume

that there exist 1 × r row vectors {vα : 0 ≤ |α| ≤ ν + 1} such that the conditions of

Theorem 4.2 hold. For each 0 ≤ |α| ≤ ν, let the vectors eα = (yα(k))k∈Ω be given

by Eq. (4.3), and let V0 = {e∗0}
⊥ be as in Eq. (4.6). Let I0 consist of all functions

g ∈ C
ν(Rn, Cr) such that:

(a) supp(g) ⊆ KΛ,

(b)
∑

k∈Zn

u0g(x + k) = 1,

(c)
∑

k∈Zn

yα(k)
∂νg(x + k)

∂xβ
= α! δα,β for each 0 ≤ |α| ≤ ν, |β| = ν,

(d) (eα ⊗ uβ)T ν
d = (eα ⊗ uβ) for each 0 ≤ |α| ≤ ν, |β| = ν.

If I0 6= ∅ and

ρ̂∞
(

{Td|V0
}d∈D

)

<
1

ρ(A)ν
, (6.3)

then for any initial f0 ∈ I0, the cascade algorithm converges uniformly to a ν-times

continuously differentiable solution f of the refinement equation.

Proof.

Let f0 ∈ I0.

Claim 1 f i+1 =
∑

ckf i(Ax−k) converges uniformly to a continuous function f.

To see why, recall that A is expansive, so ρ(A) > 1. Consequently, Eq. (6.3)

implies that ρ̂∞
(

{Td|V0
}d∈D

)

< 1
ρ(A)ν < 1. All of the conditions of Theorem 4.4

are therefore satisfied, so the convergence of the cascade algorithm to a continuous

solution f is ensured. This establishes the claim.

Claim 2 Let g0 = Dν [f0]. Then gi+1 =
∑

(ck ⊗B[ν]) gi(Ax− k) converges to a

ν-differentiable solution g of g(x) =
∑

(ck ⊗ B[ν]) g(Ax − k).

We will establish this claim by applying Theorem 6.1 using appropriate sets E

and V. For each 0 ≤ |α| ≤ ν, define eν
α by

eν
α = eα ⊗ Iν ∈ ((Cdν×dν )1×r)1×Ω,
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and let eν
α,β be the collection of the dν row vectors eν

α:

{eν
α,β}|β|=ν = {eα ⊗ uβ}|β|=ν ∈ ((C1×dν )1×r)1×Ω.

Now set

V = V ν
ν

= {(eν
α,β)∗ : 0 ≤ |α| ≤ ν, |β| = ν}⊥

= {v ∈ (((Cdν×1)r×1)Ω×1 : eν
α,βv = 0 for each 0 ≤ |α| ≤ ν, |β| = ν}

and

E = {v ∈ (((C1×dν )1×r)1×Ω : (eα ⊗ uβ)v = α! δα,β for each 0 ≤ |α| ≤ ν, |β| = ν}.

In order to apply Theorem 6.1, we must show that the following conditions hold.

(i) T ν
d (E) ⊆ E.

(ii) V is a subspace such that E − E ⊆ V

(iii) V is right invariant under each T ν
d

(iv) supp(g0) ⊆ KΛ and Φg0(Q) ⊆ E.

(v) ρ̂∞
(

{T ν
d |V }d∈D

)

< 1.

Statement (ii) is clear from the definitions of V and E, while statement (iv)

follows from assumptions (a), (b), and (c) and Eq. (6.2).

Proof of (i): By assumption (d), (eα ⊗ uβ)T ν
d = (eα ⊗ uβ). Let v ∈ E. Then

(eα ⊗ uβ)v = α! δα,β . Now (eα ⊗ uβ)T ν
d v = (eα ⊗ uβ)v = α! δα,β , so T ν

d (E) ⊆ E.

Proof of (v): This is done by establishing the relationship between

ρ̂∞({T ν
d |V }d∈D) and ρ̂∞({Td|V0

}d∈D). In doing that, Vν plays an intermediate role.

Note that Vν is given by (4.4) with s = ν. We give the proof step by step.

Step 1. A useful property of Kronecker products10 is that if {A1, . . . , Ak} are

n × n matrices and {B1, . . . , Bk} are m × m matrices, then

(A1 · · ·Ak) ⊗ (B1 · · ·Bk) = (A1 ⊗ B1) · · · (Ak ⊗ Bk). (6.4)

Using (6.4), it follows that for v ∈ Vν ,

0 ⊗ Iν = (eαv) ⊗ (IνIν) = (eα ⊗ Iν)(v ⊗ Iν),

and therefore V = Vν ⊗ Iν .

Step 2. Let B be the orthonormal basis for (Cr×1)Ω×1 given by Theorem 4.3.

There exists a unitary matrix U formed by the vectors in B so that for each d ∈

D, U∗TdU has the form given by Eq. (4.5). Let Bν = {b ⊗ Iν : b ∈ B}, and

correspondingly let Uν = U ⊗ Iν . Then

(Uν)∗T ν
d Uν = (U ⊗ Iν)∗(Td ⊗ B[ν])(U ⊗ Iν)

= (U∗ ⊗ Iν)(Td ⊗ B[ν])(U ⊗ Iν)

= (U∗TdU) ⊗ (IνB[ν]Iν) by (6.4)

= [Td]B ⊗ B[ν].
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Therefore, [T ν
d ]Bν = [Td]B ⊗ B[ν]. Furthermore, T ν

d |V = Td|Vν
⊗ B[ν].

Step 3: By the expression for the joint spectral radius given in (3.6),

ρ̂∞({T ν
d |V }d∈D) = lim

ℓ→∞
max
ǫi∈D

ρ(T ν
ǫ1 |V T ν

ǫ2 |V · · ·T ν
ǫℓ
|V )1/ℓ

= lim
ℓ→∞

max
ǫi∈D

ρ((Tǫ1 |Vν
⊗ B[ν]) · · · (Tǫℓ

|Vν
⊗ B[ν]))

1/ℓ

= lim
ℓ→∞

max
ǫi∈D

ρ((Tǫ1 |Vν
· · ·Tǫℓ

|Vν
) ⊗ Bℓ

[ν]))
1/ℓ

= lim
ℓ→∞

max
ǫi∈D

ρ((Tǫ1 |Vν
· · ·Tǫℓ

|Vν
) ρ(Bℓ

[ν]))
1/ℓ

= ρ(B[ν]) ρ̂∞({Td|Vν
}d∈D).

If λ = (λ1, ..., λn)T is the vector of the eigenvalues of A, and thus the eigenvalues

of B, then the eigenvalues of B[ν] are {λα : |α| = ν} (see Ref. 3). Therefore

ρ(B[ν]) = max{|λα| : |α| = ν} = (ρ(A))ν .

Furthermore, ρ̂∞({Td|Vν
}d∈D) ≤ ρ̂∞({Td|V0

}d∈D) by Corollary 4.1. Consequently,

ρ̂∞({T ν
d |V }d∈D) ≤ (ρ(A))ν ρ̂∞({Td|V0

}d∈D). (6.5)

Step 4: If ρ̂∞({Td|V0
}d∈D) < 1

(ρ(A))ν , then by (6.5), ρ̂∞({T ν
d |V }d∈D) < 1.

This completes the proof of Claim 2.

Claim 3 f i+1 =
∑

ckf i(Ax − k) converges to a ν-differentiable solution f of

f(x) =
∑

ckf(Ax − k).

To establish this final claim, observe that fi converges uniformly to a continuous

function f by Claim 1. Since g0 = D[ν]f
0, the function gi defined in Claim 2 satisfies

gi = D[ν]f
i by Proposition 5.1. Claim 2 therefore implies that gi converges uniformly

to a continuous function g. By Lemma 6.1, it follows that f ∈ Cν(K, Cr) and

g = D[ν]f. In other words, the cascade algorithm converges to a ν-times continuously

differentiable solution of the refinement Eq. (1.1).
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