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Abstract. The Balian–Low theorem expresses the fact that time-frequency concentration
is incompatible with non-redundancy for Gabor systems that form orthonormal or Riesz
bases for L2(R). We extend the Balian–Low theorem for Riesz bases to higher dimensions,
obtaining a weak form valid for all sets of time-frequency shifts which form a lattice in R

2d,
and a strong form valid for symplectic lattices in R

2d. For the orthonormal basis case, we
obtain a strong form valid for general non-lattice sets which are symmetric with respect to
the origin.

1. Introduction

The Balian–Low theorem (BLT) is a key result in time-frequency analysis. It expresses
the fact that time-frequency concentration and non-redundancy are incompatible properties
for Gabor systems. Specifically, if for some α > 0 and g ∈ L2(R) the set {e2πiℓx/α g(x −
kα)}(k,ℓ)∈Z2 is an orthonormal basis for L2(R), then

(
∫

R

|xg(x)|2 dt

)(
∫

R

|ωĝ(ω)|2 dω

)

= ∞. (1)

In other words, the window function g maximizes the uncertainty principle in some sense.
This result was originally stated by Balian [2], and independently by Low [17]. It is only
one of many examples of the fact that stability (in the form of basis properties) and good
time-frequency localization cannot be simultaneously achieved.
The proofs given by Balian [2] and Low [17] each contained a gap, which was later filled by

Coifman, Daubechies, and Semmes [7], who also extended the BLT to the case of Riesz bases.
Battle [3] provided an elegant and entirely new proof based on the canonical commutation
relations of quantum mechanics and thus demonstrated the intimate connection of the BLT to
the classical uncertainty principle. Battle’s proof was adapted by Daubechies and Janssen [8]
to provide another proof of the BLT for Riesz bases. For historical comments and variations
on the BLT we refer to [5]. Some more recent developments not reported there include the
following. Zeevi and Zibulski [20] proved that BLT phenomena also appear in the multi-
window setting. Balan [1] extended the BLT to the case of “superframes.” A BLT variation
for symplectic lattices in R

d (distinct from our results, and quoted as Theorem 12 below)
was proved in [10]. Remarks on the BLT on locally compact abelian groups appear in [12].
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Recent results related to the optimality of the BLT were obtained by Benedetto, Czaja,
Gadziński, and Powell [4].
In this note we extend the BLT (1) to higher dimensions and to more general sets of time-

frequency shifts, especially lattices in time-frequency space. While the existing proofs of the
BLT extend easily to the case of “rectangular” lattices of time-frequency shifts of the form
αZd × 1

α
Z

d, those proofs do not directly generalize to more general sets of time-frequency
shifts. As Gabor systems using non-rectangular lattices are now being used in applications
such as wireless coding, e.g., [19], it is important to understand whether and how the BLT
extends to this setting. We obtain in this paper a weak form of the BLT for Gabor Riesz
bases that is valid for all sets of time-frequency shifts which form a lattice in R

2d, and a strong
form valid for symplectic lattices in R

2d. In particular, every lattice in R
2 is a symplectic

lattice (this is not the case when d > 1). Additionally, for the orthonormal basis case we
extend the BLT to include even non-lattice sets of time-frequency shifts, requiring only that
the set be symmetric with respect to the origin.
It follows from the Wexler–Raz theorem that there do exist windows g which are well-

localized in time and frequency and which generate Gabor systems that are Riesz bases for
their closed spans within L2(R) (but not for all of L2(R)). For example, this is the case for
the Gaussian window on the lattice αZd×βZd with αβ > 1. We show that the weak BLT for
general lattices has an extension to such subspace Gabor systems. While not a localization

restriction as such, this does shed some light on the nature of such systems.
A direct proof of the BLT for symplectic lattices would be awkward and difficult. The key

ingredient in our approach is the observation that equation (1) expresses the fact that the
window g does not belong to a certain modulation space. These spaces are the appropriate
spaces for time-frequency analysis and appear in many different contexts, see [13] for exam-
ples. Our reformulation is yet another instance where the modulation spaces are crucial to
the formulation and verification of time-frequency properties. We combine the machinery
of the metaplectic representation with the invariance properties of the modulation spaces to
obtain a simple and elegant approach to proving the BLT in these contexts.
Our paper is organized as follows. In Section 2 we introduce some useful concepts of

time-frequency analysis, such as the metaplectic representation and the modulation spaces.
In Section 3 we first generalize the weak version of the BLT introduced in [5] to lattices in
higher dimensions. We then show how this result can be improved when the set of time-
frequency shifts is a symplectic lattice in higher dimensions. Finally, we observe that for the
orthonormal case, even the lattice requirement can be relaxed, and close with some open
questions.

2. Some Concepts of Time-Frequency Analysis

In discussing lattices, Gabor systems, Gabor frames, and the metaplectic representation,
we follow the definitions and notation of [13]. In particular, we write x2 = x · x =

∑d
j=1 x

2
j

for x ∈ R
d and |x| = (x · x)1/2 for the Euclidean norm on R

d, and use the Fourier transform

f̂(ω) =
∫

f(x) e−2πiω·x dx.

2.1. Lattices. A lattice Λ of Rd is a discrete subgroup with compact quotient. Equivalently,
there exists a matrix A ∈ GL(d,R) such that Λ = AZd. The volume of such a lattice is
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vol(Λ) = | det(A)|. The dual lattice of K = AZd is K⊥ = {x ∈ R
d : e2πix·k = 1 ∀ k ∈ K} =

(A−1)∗Zd.
In the context of the BLT, we will deal with time-frequency lattices, which are lattices in

R
2d. Frequently only separable lattices of the form AZd×BZ

d ⊆ R
2d, where A, B ∈ GL(d,R),

will be considered. Among these, product lattices of the form K ×K⊥ are often important.

2.2. Time-Frequency Shifts and Gabor Systems. For x, ω ∈ R
d, we define Txf(t) =

f(t−x) and Mωf(t) = e2πiω·t f(t) to be the unitary operators of translation and modulation.
Writing z = (x, ω) ∈ R

2d for a point in the time-frequency plane R
2d = R

d × R
d, we denote

the corresponding time-frequency shift by

π(z)f(t) = MωTxf(t) = e2πiω·t f(t− x).

Given a function g ∈ L2(Rd), called a window function, and a lattice Λ in the time-
frequency plane R

2d, the corresponding Gabor system is

G(g,Λ) = {π(λ)g}λ∈Λ.

If G(g,Λ) is a frame for its closed span H = span{π(λ)g)}λ∈Λ in L2(Rd), i.e., there exist A,
B > 0 such that

∀ f ∈ H, A ‖f‖22 ≤
∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B ‖f‖22,

then the associated Gabor frame operator is

Sg,Λf =
∑

λ∈Λ

〈f, π(λ)g〉 π(λ)g.

This is a positive, invertible operator of H onto itself. The canonical dual window is γ =
S−1
g,Λg ∈ H, and the canonical dual frame is the Gabor system G(γ,Λ). We have the frame

expansions

∀ f ∈ H, f =
∑

λ∈Λ

〈f, π(λ)γ〉 π(λ)g =
∑

λ∈Λ

〈f, π(λ)g〉 π(λ)γ. (2)

We recall the density theorem for Gabor frames in this setting. The following proposition
is a consequence of the more general results proved in [18, 6].

Proposition 1. If G(g,Λ) is a frame for L2(Rd), then vol(Λ) ≤ 1. If G(g,Λ) is a Riesz

basis for L2(Rd), then vol(Λ) = 1.

See [5, 6] for complete historical discussions of Proposition 1. In the lattice setting of this
paper, Proposition 1 can be improved to say that G(g,Λ) cannot even be complete when
vol(Λ) > 1 [14]. It is not difficult to construct Gabor frames or Riesz bases G(g,Λ) such that
Λ is not a lattice or a translate of a lattice in R

2d, and generalizations of Proposition 1 can
be formulated for these “irregular” Gabor frames. However, the frame hypothesis cannot
be relaxed to a completeness hypothesis when Λ is not a lattice (see [5, Thm. 2.6] for a
counterexample). It is shown in [16] that there even exist orthonormal bases G(g,Λ) such
that Λ is not a translate of a lattice. In Theorem 8 below, we formulate a version of the BLT
that applies to irregular Gabor orthonormal bases.
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2.3. Symplectic Lattices and Operators. In time-frequency analysis, compositions of
the symmetric time-frequency shifts Mω/2TxMω/2 often occur, and the symplectic form [·, ·]
defined by

[(x1, ω1), (x2, ω2)] = x2 · ω1 − x1 · ω2, (x1, ω1), (x2, ω2) ∈ R
2d,

then plays an important role, cf. [13, Ch. 9]. The symplectic group Sp(d) is the group of
all matrices M ∈ GL(2d,R) that leave the symplectic form [·, ·] invariant, i.e., M ∈ Sp(d)
satisfies

[Mx,My] = [x, y] for all x, y ∈ R
2d.

As a consequence of the Stone–von Neumann theorem, a symplectic transformation M ∈
Sp(d) corresponds to a unitary symplectic operator µ(M) on L2(Rd) which satisfies

π(Mz) = µ(M)π(z)µ(M)−1 for all z ∈ R
2d.

We refer to [11] and [13] for details about the construction of this metaplectic representation.
In the context of time-frequency analysis, the following lattices play an important role.

Definition 2. A lattice Λ ⊆ R
2d is a symplectic lattice if

Λ = αMZ
2d for some α ∈ R\{0} and M ∈ Sp(d).

Note that if M is symplectic, then | det(M)| = 1, so vol(αMZ
2d) = |α|.

Since Sp(1) = SL(2,R), every lattice in R
2 is a symplectic lattice. However, this is not

the case when d > 1. All product lattices are symplectic. If a symplectic lattice αMZ
2d is

separable, then MZ
2d is a product lattice.

The next proposition, taken from [13, Prop. 9.4.4], shows how statements for Gabor sys-
tems on rectangular lattices may be transferred to general symplectic lattices.

Proposition 3. Let Λ = αMZ
2d be a symplectic lattice, and let G(g,Λ) be a Gabor system

such that the Gabor frame operator Sg,Λ is bounded on L2(Rd). Then the Gabor system and

Gabor frame operator on αZ2d and on Λ are related by

G(g,Λ) = µ(M) G(µ(M)−1g, αZ2d)

and

Sg,Λ = µ(M) Sµ(M)−1g,αZ2d µ(M)−1.

2.4. Modulation Spaces. The modulation spaces quantify the time-frequency content of a
function or distribution. They are defined by means of the short-time Fourier transform (or
a similar time-frequency representation). Let g ∈ S(Rd) be a non-zero Schwartz function.
Then the short-time Fourier transform of f ∈ S(Rd)′ with respect to the (fixed) window g is

Vgf(x, ω) =

∫

Rd

f(t) g(t− x) e−2πiω·t dt = 〈f,MωTxg〉.

For our purpose the following special cases of the modulation spaces will be sufficient.
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Definition 4. Let v(z) ≥ 1 be a submultiplicative weight function on R
2d with at most

polynomial growth. Then the modulation space Mp
v , where 1 ≤ p ≤ ∞, is defined as the

subspace of all f ∈ S(Rd)′ such that the norm

‖f‖Mp
v
:=

(
∫

R2d

|Vgf(z)|
p v(z)p dz

)1/p

is finite, with the usual adjustment if p = ∞. If v ≡ 1, we write Mp for Mp
v .

It can be shown that Mp
v is a Banach space, and that different window functions g ∈ S(Rd)

yield equivalent norms for Mp
v .

For the BLT, the following identifications with standard function spaces are especially
relevant, cf. [13, Prop. 11.3.1]. L2

s denotes the weighted L2-space with norm
∫

|f(t)|2 (1 +

|t|2)s dt, and Hs denotes the Bessel potential space with norm
∫

|f̂(ω)|2 (1 + |ω|2)s dω.

Lemma 5. (a) If v(x, ω) = (1 + |x|2)s/2, then M2
v = L2

s.

(b) If v(x, ω) = (1 + |ω|2)s/2, then M2
v = Hs.

The weights that we shall use are

m(x, ω) = (1 + |x|2 + |ω|2)1/2 and mj(x, ω) = (1 + |xj|
2 + |ωj|

2)1/2, j = 1, . . . , d.

Lemma 5 implies that M2
m = L2

1 ∩H1.
We will need the following special case of the invariance properties of the modulation

spaces [9, Thm. 29], cf. also [13, Prop. 12.1.3] for the case p = 1.

Proposition 6. If M ∈ Sp(d), then the symplectic operator µ(M) is an isomorphism of Mp
m

onto itself for each 1 ≤ p ≤ ∞.

Using Lemma 5 we can reformulate the one-dimensional BLT (1) in terms of a modulation
space.

Theorem 7. If the Gabor system G(g, αZ × 1
α
Z) is an orthonormal basis for L2(R), then

g /∈ M2
m.

Proof. Since we are given that g, ĝ ∈ L2(R), it follows that g ∈ M2
m if and only if (1)

fails. �

3. The Balian-Low Theorem

In the following we let

Xjf(x) = xjf(x) and Pjf =
1

2πi

∂f

∂xj

= (Xj f̂)
∨

for j = 1, . . . , d denote the usual position and momentum operators. Note that

‖Xjf‖
2
2 =

∫

Rd

|xjf(x)|
2 dx and ‖Pjf‖

2
2 =

∫

Rd

|ωj f̂(ω)|
2 dω.

Consequently, if f ∈ L2(Rd), then

f ∈ M2
mj

⇐⇒ ‖Xjf‖2 ‖Qjf‖2 < ∞



6 K. GRÖCHENIG, D. HAN, C. HEIL, AND G. KUTYNIOK

and

f ∈ M2
m ⇐⇒

(
∫

Rd

(

|x| |g(x)|
)2

dx

)(
∫

Rd

(

|ω| |ĝ(ω)|
)2

dω

)

< ∞.

3.1. The Weak Subspace BLT for Arbitrary Lattices. In this section we formulate a
weak version of the BLT. This result is valid for any lattice Λ in R

2d and also applies to
Gabor systems which are only Riesz bases for their closed spans in L2(Rd).

Theorem 8. Let Λ be a lattice in R
2d. If g ∈ L2(Rd) is such that G(g,Λ) is a Riesz basis

for its closed span H = span{π(λ)g}λ∈Λ in L2(Rd) and the dual window is γ = S−1
g,Λg, then

for each j = 1, . . . , d, one of Xjg, Pjg, Xjγ, or Pjγ cannot lie in H.

In particular, if G(g,Λ) is a Riesz basis for L2(Rd), then
(a) for each j = 1, . . . , d, either g /∈ M2

mj
or γ /∈ M2

mj
, and

(b) either g /∈ M2
m or γ /∈ M2

m.

Proof. The proof is an extension of Battle’s argument, so we only sketch the details. Assume
that Xjg, Pjg, Xjγ, Pjγ ∈ H. We can compute that for any (p, q) ∈ R

d we have

〈Xjg,MqTpγ〉 = 〈T−pM−qg,Xjγ〉 and 〈MqTpg, Pjγ〉 = 〈Pjg, T−pM−qγ〉.

Then, using the frame expansions (2), we have that

〈Xjg, Pjγ〉 =

〈

∑

(p,q)∈Λ

〈Xjg,MqTpγ〉MqTpg, Pjγ

〉

=
∑

(p,q)∈Λ

〈T−pM−qg,Xjγ〉 〈Pjg, T−pM−qγ〉

=

〈

Pjg,
∑

(p,q)∈Λ

〈Xjγ,MqTpg〉MqTpγ

〉

= 〈Pjg,Xjγ〉.

However, the canonical commutation relation [Xj, Pj ] = − 1
2πi

I leads to the contradiction

1 = 〈g, γ〉 = 2πi
(

〈Pjg,Xjγ〉 − 〈Xjg, Pjγ〉
)

= 0. �

3.2. The BLT for Symplectic Lattices. In this subsection we will obtain a strong BLT for
symplectic lattices. For the proof we combine the machinery of the metaplectic representation
with Theorem 9.
First, we observe that the result for product lattices follows directly from the weak BLT.

Theorem 9. Let Λ = K ×K⊥ be a product lattice in L2(R2d). If g ∈ L2(Rd) is such that

G(g,Λ) is a Riesz basis for L2(Rd), then
(a) g /∈ M2

mj
for EACH j = 1, . . . , d, and

(b) g /∈ M2
m.

Proof. We can use the same arguments as in [5, Sec. 7.3] to show that for each j = 1, . . . , d,

Pjg ∈ L2(Rd) ⇐⇒ PjS
−1
g,Λg ∈ L2(Rd) and Xjg ∈ L2(Rd) ⇐⇒ XjS

−1
g,Λg ∈ L2(Rd). �

Now we can extend to the case of symplectic lattices.
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Theorem 10. Let Λ be a symplectic lattice in R
2d. If g ∈ L2(Rd) is such that G(g,Λ) is a

Riesz basis for L2(Rd), then
(a) g /∈ M2

mj
for SOME j = 1, . . . , d, and

(b) g /∈ M2
m.

Proof. Since Λ is a symplectic lattice, there exists some α ∈ R\{0} and some M ∈ Sp(d)
such that Λ = αMZ

2d. By the density theorem (Proposition 1), we must have α = 1.
Set g̃ = µ(M−1)g ∈ L2(Rd). Then Proposition 3 implies that

G(g,Λ) = µ(M)G(g̃,Z2d).

Since µ(M) is unitary, the Gabor system G(g̃,Z2d) is also a Riesz basis for L2(Rd). The BLT
for product lattices (Theorem 9) therefore implies that g̃ /∈ M2

m. By the invariance property
of the modulation spaces (Proposition 6), we conclude that g = µ(M)g̃ /∈ M2

m, and thus
statement (b) holds. Finally, statement (a) follows from the fact that M2

m = ∩d
j=1M

2
mj
. �

3.3. The BLT on Non-Lattices. The assumption of lattice structure is not essential to
the definition of a Gabor frame. In particular, if Λ is any countable sequence of points in
R

2d, then G(g,Λ) is a Gabor frame for L2(Rd) if
∑

λ∈Λ |〈f, π(λ)g〉|
2 is an equivalent norm

for L2(R). Unfortunately, if Λ is not a lattice then although a dual frame {hλ}λ∈Λ will
exist, it need not be a Gabor frame of the form G(γ,Λ). However, for the case of a so-
called normalized tight frame, including orthonormal bases in particular, the dual frame
coincides with the frame. In this case, we can observe that the proof of Theorem 8 requires
no structural assumptions on Λ except that it be symmetric about the origin. Hence we
obtain the following.

Theorem 11. Let Λ be a countable sequence in R
2d such that Λ = −Λ. If g ∈ L2(Rd) is

such that G(g,Λ) is an orthonormal basis for L2(Rd), then
(a) g /∈ M2

mj
for each j = 1, . . . , d, and

(b) g /∈ M2
m.

3.4. Remarks and Open Questions. It is instructive to compare Theorem 10 to the
following BLT variation obtained in [10].

Theorem 12. Let Λ be a symplectic lattice in R
2d. If g ∈ L2(Rd) is such that G(g,Λ) is a

Riesz basis for L2(Rd), then g /∈ M1.

Theorems 10 and 12 are distinct (neither implies the other), because M1 is not embedded
into M2

m, nor conversely.
Let (C0, ℓ

1) denote the Wiener amalgam space

(C0, ℓ
1) =

{

f : f is continuous and
∑

k∈Zd

‖f · χQ+k‖∞ < ∞
}

,

where Q = [0, 1)d. BecauseM1 is embedded into (C0, ℓ
1), we have for the case Λ = αZd× 1

α
Z

d

that Theorem 12 is implied by the following result known as the Amalgam BLT [15].

Theorem 13. If g ∈ L2(Rd) is such that G(g, αZd × 1
α
Z

d) is a Riesz basis for L2(Rd), then
g, ĝ /∈ (C0, ℓ

1).
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Since M2
m is not embedded into (C0, ℓ

1) nor conversely, Theorem 10 (for the case Λ =
αZd × 1

α
Z

d) is distinct from Theorem 13.
The proof of Theorem 12 relies on the fact thatM1 is invariant under symplectic operators.

It is unknown whether (C0, ℓ
1) is invariant under such operators, and it is an open question

whether the Amalgam BLT extends to more general lattices than αZd × 1
α
Z

d.

Finally, we observe that some of the most natural lattices in R
2d are the separable lattices.

If a separable lattice with unit volume is symplectic, then it is a product lattice. Every lattice
in R

2 is symplectic, but this is not the case in R
2d when d > 1. It is an open question as to

whether the BLT extends to the case of separable, non-product lattices in higher dimensions.
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