The **shortest path** between two vertices in a weighted graph is the path of least weight. (If the graph is not weighted, it’s the path with the fewest edges.)

Let \(G = (V, E) \) be a graph with weight function \(w \) and particular vertices \(s, t \in V \).

Dijkstra’s Shortest Path Algorithm

Step 1: Assign \(s \) the label \((-, 0)\); \(s \rightarrow s : (-, 0) \).

Step 2: Until \(t \) is labeled or no further labels can be assigned, do the following:

1. **Step 2a:** For each labeled vertex \(u : (x, d) \) and each unlabeled vertex \(v \) adjacent to \(u \), compute \(d + w(e) \) for \(e = uv \).
2. **Step 2b:** Find the minimum value \(d' \) over all values \(d + w(e) \) from Step 2a.
3. **Step 2c:** For each \(u \) and \(v \) with \(d + w(e) = d' \), assign the label \((u, d')\) to \(v \). If \(v \) has more than one possible label from different \(u \), pick any \((u, d')\).

Complexity is \(\mathcal{O}(n^3) \) where \(n = |V| \), but can be modified to an \(\mathcal{O}(n^2) \) algorithm.

Dijkstra’s Shortest Path Algorithm (IMPROVED)

Step 1: Assign \(s \) the permanent label 0. Assign every other vertex a temporary label of \(\infty \).

Step 2: Until \(t \) has a permanent label or no temporary labels are changed, do the following:

1. **Step 2a:** Let \(v \) be the vertex with the most recent permanent label \(d \). For each vertex \(u \) adjacent to \(v \) with temporary label \(t \), if \(d + w(vu) < t \), then update temporary label of \(u \) to \(d + w(vu) \).
2. **Step 2b:** Find the vertex \(w \) with the smallest temporary label \(t \), and make its label \(t \) a permanent one. (Break ties arbitrarily).

All shortest paths between pairs of vertices in a graph can be found in time \(\mathcal{O}(n^4) \) (resp. \(\mathcal{O}(n^3) \)) by running Dijkstra’s (improved) algorithm until all vertices have a (permanent) label for each possible start vertex \(s \).

Floyd–Warshall Algorithm ALL PAIRS SHORTEST PATH

Step 0: For vertices \(v_i \in V \) with \(1 \leq i \leq n \), consider an \(n \times n \) matrix with entries \(d(i, j) \).

Step 1: For \(1 \leq i \leq n \), set \(d(i,i) = 0 \). For \(i \neq j \), let \(d(i, j) = w(e) \) if \(e = v_i v_j \) is an edge in \(G \). Otherwise, set \(d(i, j) = \infty \).

Step 2: For \(k = 1 \) to \(n \), for \(i, j = 1 \) to \(n \), let \(d(i, j) = \min\{d(i, j), d(i, k) + d(k, k)\} \).

The final value of \(d(i, j) \) is the shortest distance from \(v_i \) to \(v_j \), and complexity is \(\mathcal{O}(n^3) \).