Let A and D be $n \times n$ matrices.

Let $L : V \to V$ be a linear operator on an n-dimensional vector space V.

Recall that A and D are similar matrices if and only if there exists a nonsingular matrix P such that $D = P^{-1}AP$ if and only if A and D represent L with respect to two bases for V.

The linear operator L is diagonalizable if there exists a basis S for V such that L is represented with respect to S by a diagonal matrix D.

If A is similar to a diagonal matrix, then A is diagonalizable.

Theorem 1 Similar matrices have the same eigenvalues.

Theorem 2 The linear operator L is diagonalizable if and only if V has a basis S of eigenvectors of L. If D is the diagonal matrix representing L with respect to S, then the entries on the main diagonal of D are the eigenvalues of L.

Theorem 3 The matrix A is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. The elements on the main diagonal of D are the eigenvalues of A.

Theorem 4 If the roots of the characteristic polynomial of A are all distinct, then A is diagonalizable.