Elementary probability

Consider a procedure (often called an experiment) with a set of possible outcomes \(S \). The set \(S \) is called the sample space of the experiment, and a subset \(A \subseteq S \) is called an event.

Assume that all outcomes in a finite sample space \(S \) are equally likely. The probability of an event \(A \subseteq S \) is denoted \(P(A) \) and defined to be

\[
P(A) = \frac{|A|}{|S|}.
\]

Let \(S \) be a (finite) sample space with events \(A, B \subseteq S \) and \(A_i \subseteq S \) for \(1 \leq i \leq n \).

Assume that all outcomes in \(S \) are equally likely (a.k.a. “the probabilities are uniform”).

Theorem 1

1. \(P(\emptyset) = 0 \), \(P(S) = 1 \), and \(0 \leq P(A) \leq 1 \) in general.
2. \(P(A^c) = 1 - P(A) \) since \(A^c = S \setminus A \).
3. \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \).

Theorem 2

\[
P\left(\bigcup_{i=1}^{n} A_i \right) = \sum_{1 \leq i \leq n} P(A_i) - \sum_{1 \leq i < j \leq n} P(A_i \cap A_j) + \sum_{1 \leq i < j < k \leq n} P(A_i \cap A_j \cap A_k) + \ldots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_i \right).
\]

Two events \(A, B \subseteq S \) are mutually exclusive if \(A \cap B = \emptyset \). Multiple events \(A_i \subseteq S \) are pairwise mutually exclusive if \(A_i \cap A_j = \emptyset \) for \(1 \leq i < j \leq n \).

Corollary 1 Let \(A_i \) be pairwise mutually exclusive events for \(1 \leq i \leq n \). Then

\[
P\left(\bigcup_{i=1}^{n} A_i \right) = \sum_{1 \leq i \leq n} P(A_i).
\]

How to solve uniform, finite probability questions

Step 1: Identify the sample space \(S \) and event \(A \).

Step 2: Find \(P(A) \) by the appropriate counting method.