Let $G = (V, E)$ be a connected graph with $|V| = n > 1$, possibly with a weight function w.

A **spanning tree** of G is a subgraph that is a tree and that includes every vertex of G.

A **minimum spanning tree** of a weighted graph is a spanning tree of least weight.

Two spanning trees T_1 and T_2 are **different** if they use different edges of G.

Suppose the vertices of G are labeled v_1, v_2, \ldots, v_n. The **adjacency matrix** of G is the $n \times n$ matrix $A = (a_{i,j})$ with entries $a_{i,j} = 1$ if $v_i v_j$ is an edge and 0 otherwise.

Theorem 1 (Kirchhoff) Let A be the adjacency matrix of G and M the matrix obtained from A by changing all 1’s to −1’s and $a_{i,i} = 0$ to $a_{i,i} = \deg(v_i)$. Then the number of spanning trees of G is the value of any cofactor of M.

Kruskal’s Minimum Spanning Tree (MST) Algorithm

Step 1: Find a minimum weight edge $e_1 \in E$. Set $k = 1$ and $S_k = \{e_1\}$.

Step 2: While $k < n$,

- **Step 2a:** Look for an edge $e \in E$ such that $\{e\} \cup S_k$ does not contain a circuit.
- **Step 2b:** If no such e exists, output $S_k = \{e_1, \ldots, e_k\}$ and stop.
- **Step 2c:** Else, let $S_{k+1} = \{e_{k+1}\} \cup S_k$ where the edge e_{k+1} has least weight among the possible e for this iteration.

Prim’s Minimum Spanning Tree (MST) Algorithm

Step 1: Choose any vertex v and let e_1 be an edge of least weight incident with v. Set $k = 1$ and $S_k = \{e_1\}$.

Step 2: While $k < n$,

- **Step 2a:** Look for a vertex w that is not in the subgraph T whose edges are S_k.
- **Step 2b:** If no such w exists, output $S_k = \{e_1, \ldots, e_k\}$ and stop.
- **Step 2c:** Else, let $S_{k+1} = \{e_{k+1}\} \cup S_k$ where the edge e_{k+1} has least weight among all edges of the form ux, where u is a vertex in T and x is not.